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SUMMARY

A numerical and experimental study of time domain methods for modeling and
parameter identification of structural systems is presented. Models are developed which
can be used to predict the transient response of multiple degree of freedom systems
subjected to arbitrary input. The linear, discrete time transfer function is expressed in a
form called the Autoregressive Moving Average (ARMA) model. The ARMA model is a
minimum parameter model that may be parameterized with a minimum number of measured
quantities. The ARMA model is contrasted to traditional models such as differential
equation models and modal methods. The ARMA model identification algorithms are also
compared to time domain modal methods. Though it has proven useful for a number of
low order systems, the identification of the ARMA model is often hampered by the
sensitivity of parameter estimates to measurement noise bias. Modal methods and signal
processing algorithms reduce the sensitivity to noise by using methods such as model

overspecification or complex iterative procedures. Numerous algorithms and their
effectiveness in reducing noise bias are presented. Finally, a two-stage identification
technique is presented which uses overspecified models to estimate the poles of the ARMA
model from system free vibration response data using a form of the Principal Eigenvectors

Method. A Least Squares algorithm is then used to identify the transfer function zeroes
from forced response records. Experimental response data for both single-degree-of-
freedom and multiple-degree-of-freedom systems are used to evaluate the different
methods of identification. An extension of the methods to nonlinear discrete time series
models is also presented. These models are a logical extension of the linear models. The
nonlinear model forms are discussed and both simulated and actual experimental data from

an oleo-pneumatic landing gear strut are used to evaluate the model forms.
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INTRODUCTION

Bk& f
Dynamic system modeling of real structural systems is typically done for one of

three reasons. The system model may be needed to determine whether the structure will

have acceptable response to the variety of input forces that it will encounter during its

lifetime. If the response is unacceptable, either the structure is modified, perhaps using

some information extracted from the model, or the input forces have to be altered. The

second reason is that a system model may be needed to implement a control algorithm. The
required accuracy of the model depends on the sophistication of the algorithm. The third

reason may be simply a verification of results developed from some other analysis.

Analytical or experimental procedures are used to develop the system model. The

traditional analytical procedures involve the formulation of differential equations termed the

equations of motion. Either numerical or analytical integration is used to determine the

solutions of the differential equations of motion and thus the system response. One of the

more popular approaches to develop the equations of motion for a structure is the Finite

Element Method (FEM). The FEM can be used to develop a set of second order differential

equations through discretization of the structure. The set of second order differential

equations represents one form of a system model. Structural engineers usually prefer the

system model in an alternative form termed the modal form. The modal form of the system

model is comprised of the mode shapes, modal frequencies, and modal damping factors.

The modal frequencies and modal damping factors can be determined from the

characteristic equation of the structure. The mode shape defines the amplitude of response

at given modal frequencies at the discretized points. The response at the discrete point is a

summation of the scaled response at each modal frequency. The modal form of the model
can be synthesized from the equations of motion and the equations of motion can be

synthesized from the modal form of the model.
The traditional experimental procedure for the determination of a system model

involves the modal form. The modal information is derived from experimentally acquired

data. The structure must be excited at a point or a number of points and the response

measured at a discrete set of points. Frequency domain methods of identification transform
the time domain response measurements into the frequency domain in the form of Discrete

Fourier Transforms (DFT) using a Fast Fourier Transform (FFT) algorithm. Frequency

Response Functions (FRF) can be derived by dividing the DFT's of the response

measurements by the DFT's of the input functions. Multiple data sets are acquired and the
FRF's for each input-output pair are averaged to reduced leakage and measurement errors.



The modal information is then parameterized by curve fitting techniques performed on the

ensemble of FRF's.
In the past decade, modal analysis techniques using time domain data have also

become popular. These techniques use time domain data to parameterized the modal form

of the model. Either a set of time domain free response data can be directly used or the

ensemble of FRF's can be transformed back into the time domain providing impulse
response functions. The major time domain methods include the Complex Exponential

Method (CEM), Ibrahim's Time Domain technique (ITD), and the Eigensystem Realization

Algorithm (ERA). The time domain methods involve the formulation of a coefficient
matrix from the time domain data. The eigenvalues and eigenvectors of this matrix

completely characterize the modal form of the model. The methods differ by the way in
which the coefficient matrix is formed.

Time domain methods offer a higher resolution capability for closely spaced

frequencies than the frequency domain methods. The major advantage of the frequency

domain methods is that multiple sets of data can be used and the effect of noise can be
greatly reduced. The time domain methods have to use overspecified model orders or
iterative techniques to counter the effects of noise bias. The frequency domain methods are
user intensive, requiring the user to distinguish between important and unimportant modes;
the time domain methods are more automated. The time domain methods may therefore be
better suited for rapid "on-line" modeling.

The frequency domain models can be represented by a matrix of transfer functions
in the Laplace domain. The time domain models can be represented by a matrix of discrete

time transfer functions. Response is determined, using the frequency domain models, by

convolution integrals involving the elements of the matrix and the input function.
Response is determined, using the time domain models, by recursive addition of state
variables. The weights of the state variables in the addition process are defined by the

parameters in the discrete time transfer function.

The Problem

During service, certain types of structures can assume many different
"configurations" due to changes in mass loading, temperature changing the structural
properties, or failure of localized components. If one is concerned with the prediction of

the dynamic response of critical components of a complete structure when subjected to a
specific loading condition, then a single structural model defined for the "ideal" structure
may not prove suitable. The many possible structural "configurations" and inputs in the
lifetime of some structures place limits on the usefulness of certain detailed analytic or

2



numerical modeling procedures such as Finite Element Analysis. It would be desirable to

have techniques that would provide "on-line" or adaptive models that would be suitable for

the rapid and accurate prediction of transient dynamic response for a specific set of loading

conditions.

Consider the problem of an airplane about to traverse a rough or damaged runway.

Prediction of peak acceleration levels at several critical locations on the structure could help

to determine whether the aircraft would be damaged while using the runway or could help
to determine the speed and path the aircraft should take to minimize the risk of damage. A

model relating the vibration (peak displacement or acceleration) at the critical locations

within the structure to the specific runway profile would be needed. However, each time
the aircraft is used, its structural configuration may change; for example, the payload or

fuel loading may be modified. When the structural configuration changes, the predictive
mGdel must change. Or consider future large space structures that will be fabricated in
orbit. Dynamic models will be necessary to control these structures. The varying structural

characteristics during assembly would outdate the baseline analytical or modal models used
to predict dynamic response.

In both examples, input to the structure is provided at a discrete number of points,

and knowledge of the system response may be necessary at only a finite number of points
on the structure. It would be desirable to identify or update the structural characteristics

every time the structure is used. Ideally, digital time histories of the input and system

output would be acquired, and the system model or transfer function would be derived or
updated automatically. For linear systems, discrete time transfer functions are well-suited

for automatic digital identification. One form of a discrete time transfer function is the
Autoregressive Moving Average (ARMA) model. The ARMA model can be used to predict
response for Multiple Input Multiple Output (MIMO) systems as well as Single Input

Single Output (SISO) systems.

Overview

This report is concerned with the suitability and identification of ARMA models for

structural response prediction, and will be limited to SISO applications. The extension to
MIMO systems seems to be direct. (More research in this area may be necessary.) This

report presents a discussion of the suitability of using ARMA models for structural
response prediction and an overview of the factors relating to the parameter identification

process. The ARMA model was chosen because of its suitability to the digital environment
and because time domain models can be identified in a more automated fashion than

frequency domain models. These two factors are very important when considering the

3



ultimate goal of response prediction. For example, if an aircraft taxi response is desired,

the data required to parameterize a model for the aircraft would be acquired as part of the

digital instrumentation system planned for future aircraft systems, and the "model" for

structural response prediction would have to be automatically synthesized so that
"warnings" or operational instructions would be provided to the pilot.

In addition to the ARMA model, Autoregressive (AR) models and Moving Average

(MA) models will be discussed. The major identification algorithms for the

parameterization of the AR, MA, and ARMA models will be presented. A classical

identification scheme, the single-stage-least-squares (SLS) algorithm, and a proposed

modification, a two-stage-least-squares (2LS) algorithm, are the main algorithms

presented. Results using the SLS and 2LS algorithms to parameterize single-degree-of-

freedom (SDOF) and multiple-degree-of-freedom (MDOF) system models are presented.

These results were achieved using simulated and actual experimental data and the models

were then used to predict transient response for these systems. The final section will

describe the extension of the discrete time series models to nonlinear models.

4



DYNAMIC SYSTEM MODELS

There are many different types of analytic or numerical models that can be used to

predict vibration. The models can be developed from either basic physical principles or

from the observed response of the system. This report will focus on the development of

numerical models for complex structural systems by recording and analyzing the response

of the system. The experimental model can be in the form of a parameterized set of

differential equations, a modal model, or a parameterized set of difference equations. This

section briefly presents the different forms of the system model and compares the

requirements necessary to determine system parameters. A discussion at the end of the

section will give some of the reasons why the ARMA model has been chosen as the focus

of this report.

Differential EQuations
The undergraduate engineer is taught in mechanics and vibration classes that

complex structures can be modeled as discretized, linearized, multiple-degree-of-freedom

systems. Newtonian mechanics can be used to write a system of differential equations to

describe the dynamic behavior of the structure. The differential equations are typically

written in the form of second order, linear, constant coefficient equations as

My + C' + Ky = Bu (1)

where y is a vector representing the position of n generalized discrete points representing

the n degrees of freedom and u is a vector of m inputs. The coefficient matrices M, C, K

and B, which are referred to as system parameters, are used to describe the system. Some

parameter identification techniques attempt to determine M, C, K, and B from

experimental data. The estimation procedures, referred to as equation of motion methods,

require that all inputs and the position, velocity, and acceleration at the generalized degrees

of freedom be measured. Some methods use integration or differentiation to generate two

of three measurement quantities (position, velocity, and acceleration), from one

measurement (position, velocity, or acceleration) but the applicability of this approach to

anything but the simplest of systems has not been demonstrated. Usually, the matrices in
Eqn 1 can only be estimated to within a transformation unless a mass or stiffness

perturbation method is used. If the parameters of the system can be determined and one

wants to determine the response of the system to another input, the usual methods for the



solution of linear differential equations are sufficient. Given the model, the response of the

generalized points io an arbitrary input can be predicted through numerical integration.
The set of differential equations can be reduced to a single differential equation of

order 2n with a single dependent response variable. The dependent variable can be any

linear combination of the n generalized degrees of freedom. The single differential equation

can also be parameterized from experimental data. The estimation procedure requires that

all inputs and the dependent response with all of its derivatives up to order 2n be measured

or estimated. The differential equation can be used to predicted the response of the single

dependent variable to an arbitrary input. The reduction of the model given by Eqn 1

simplifies the estimation process, since the number of parameters of the model has been

reduced. The reduced model gives response predictions of the one dependent variable and

not at all the generalized coordinates.

Modal Models

Modal methods use the measured response to estimate vibration parameters such as

the mode shape, natural frequencies, damping factors, and modal participation factors. The
input to the system can take the form of an impulse, a "random" time history, or a periodic

function of specific form, such as a sine wave. The modal method assumes that the actual

system response is the superposition of a number of characteristic "modes" with specific

frequencies and damping characteristics. The method is based on the measurement of the

complex response of the system and then the processing of the response data to determine

the contributing modal parameters.

The response of the system due to an impulse is the free response after the impulse
has occurred. The solution of Eqn 1 due to an impulse is of the form y(t)=p exp(kt).

Substitution into Eqn 1 yields the eigenvalue problem

[X2 M + X C +K] p= 0 (2)

There exist 2n discrete time eigenvalues (poles), X, representing the natural frequencies and

damping factors. Here, p represents the complex modes of vibration and is a scaled version

of the mode shapes. The system response to the unit impulse is found by the summation
2n

x(t)=Y p. exp(kj t) (3)
j=6



Modal methods use time domain data or frequency domain data to identify the poles and the

complex modes of vibration. The response at the measurement points due to an impulse at

the other input locations is needed to identify the complex modes of vibration for each

input; the scaling of the individual modes define the modal participation factors.

The identification of the modal model requires that the impulse response function,

in the time domain, or the frequency response function, in the frequency domain, be
"measured" at every output location for every input location. Whether the identification

procedure is time or frequency based, the impulse response function is usually developed

in the frequency domain using ensemble averages of the input and output frequency

spectra. A measurement of the response at every location and a measurement of each input

are required. The measurements can be made all at once or separately. But many

measurements at many locations are usually needed. This method is very well-established

and is very useful if a complete model of the structure is desired.
There are some advantages and disadvantages to the use of modal methods. The

estimated frequencies, damping factors, and mode shapes from each impulse response will

be slightly different. Global estimates have to be made through the use of some averaging
procedure. Also, if there are n degrees of freedom, response measurements at n locations

are required. Given frequency, damping factor, mode shape estimates, and modal

participation factors, the generalized stiffness (M- 1K), generalized damping matrices (M"

IC), and generalized input matrix (M- 1 B) can be estimated. Identification of the full

modal model is equivalent to the identification of the differential equations when the

generalized coordinates are the modes of vibration. The modal model can be synthesized

from the differential equation model and vice versa.

Difference Models

The differential equation model can be transformed into a difference equation model

by a number of differencing techniques. A form of the difference equation model is

Yk + AI Yk-I + A2 Yk-2 = B0 Uk + BiUk-l+ Bp Uk. 2  (4)

where y is a vector of n responses and u is a vector of m inputs at discrete times. Equation

4 is an ARMA model for an Multiple Input and Multiple Output (MIMO) system. The

Autoregressive parameters are the A matrices and Moving Average parameters are the B

matrices. Mode shapes, frequencies, and damping factors can all be derived from a MIMO

ARMA model as described by reference 1. Identification of the ARMA model given by

Eqn 4 would require the input at each location to be measured and the response at n
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locations to also be measured, just as with the modal models. But unlike the modal
models, the ARMA model can be identified without forming the impulse response

functions. Reference 1 also shows that identification of the Autoregressive matrices from
impulse response functions is equivalent to the time domain modal method known as the
Ibrahim Time Domain Technique (reference 2). Unlike the differential equation models, no
integration is necessary to predict response. But like the differential equation models, the
ARMA model can be reduced if only a single response is measured. The resulting

difference model would be

Yk + alYk-l + +a2nYk-2n b0 Uk+ b T Uk- +..+ b2n Uk-2n (6)

which is a Multiple Input Single Output (MISO) model; here the Moving Average
parameters are row vectors and the Autoregressive parameters are constants. For a single
input, the Moving Average parameters become scalars. The identification of the SISO
ARMA model requires that only a single input and a single output be measured.

Overview
The goal of the research effort summarized in this report was to study methods that

may be able to automatically parameterize a model for a complex structural system. The
model would then be used to predict response for a specified system input. The
Differential Equation methods are undesirable because the full state of the response
(position,velocity, and acceleration) is required from measurements or from auxiliary

estimations (integrations or differentiations). The modal methods are undesirable because
multiple measurement locations are required. The ARMA model appears to present the

best alternative. The size of the ARMA models is adjustable, depending upon how many
response locations are required. In the aircraft taxi response example, if the predicted

acceleration response at the wingtip and the pilot location are the only critical locations, the
ARMA model can be developed for the response at just those locations. Only the

acceleration at wingtip and pilot locations and the inputs have to be measured to identify the
model. The ARMA model can also be identified without forming the impulse response in
the frequency domain. The identification of the ARMA model can be accomplished entirely
in the time domain. The next section will describe the ARMA model in depth, and the
remaining sections deal with the identification of the discrete time series models.
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DISCRETE TIME TRANSFER FUNCTIONS

The ARMA model is used in this report to predict structural vibration.

Identification procedures, examined later in the report, will parameterize the ARMA model
from input-output discrete time histories. Before proceeding to the identification
procedures, background on the ARMA model is provided. This section describes, through

the use of the z-transform, the discrete time transfer function and its relationship to the

continuous time transfer function. Approximations are introduced that will allow the
discrete time transfer function to be synthesized from the continuous time transfer function.
Applications of the ARMA model are briefly discussed, and the advantages and

disadvantages of ARMA models are presented. Examples using discrete time transfer

functions to predict vibration are included. This section introduces the ARMA model,
describes relationships to continuous transfer functions, and shows, by example, that the
ARMA model can be used to accurately predict structural vibration.

The Z-transform
For linear systems the relationship between the input to the system and the system

response or output can be expressed as transfer functions. The transfer functions can be
determined by transforming the input and output time functions using Laplace
transformations. The transfer function in the Laplace domain is found by dividing the
Laplace transform of the output by the Laplace transform of the input,

Y(s)G(s) -- =--) (7)

The frequency domain transfer function is simply the Laplace domain transfer function
evaluated along the complex axis (s=j0i). The goal of frequency domain identification

methods is to accurately determine a frequency domain transfer function for every input-
output pair. There exists a discrete time equivalent of Eqn 7 that can be used in the time
domain. The discrete time equivalent involves the use of the z-transform instead of the
Laplace transform. The relationship between the s or Laplace domain and the z or discrete

time domain is written as

z=esh (8)

where s is the Laplace variable, z is the z-transform variable, and h the disc-ete time
interval. Note that the stable region in the Laplace domain ( that is the region in which the
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real part of s in negative) is mapped inside the unit circle in the z-domain. Analytically, the

discrete time transfer function is obtained by a straightforward procedure if the input and

output time functions are known. Realistically, the time functions are measured at discrete

time instances, and the exact input and output time functions are unknown. In practice, the

discrete time transfer function has to be determined using a modified form of the z-

transform.

Suppose that a function, f(t), is known precisely at n discrete time instances, then

the sampled function, f*(t), can be reconstructed as a summation of the discrete time values

times the appropriate delta functions,

f*(t) = f(kh) 8(t - kh) (9)

k=0

Here, f*(t) is exactly equivalent to f(t) at the n discrete time instances and is zero at every

other time. The Laplace transform of Eqn 9 is

F(s) = 2 f(kh) eksh (10)
k=O

The z-transform of Eqn 9 is calculated by substituting Eqn 8 into Eqn 10 to obtain

F(z) = 2 f(kh) Z k (1i)

k=O

The discrete time transfer function is simply the ratio between the z-transform of the output

and the z-tradnorm of the input;
n-1

X y(kh) z

Y(z) k=O
G(z) = U-Z= n-1 (12)

u(kh) zk

If there is no noise or errnr in the measurements, Eqn 12 may reduce to a polynomial

expression

10



lb + blz- + b2z-2+ ... + bpz p

G(z) = -1 -2 (13)I + alz + a2 z + ... + apZ-p

If there is noise, an identification algorithm must be used to estimate the parameters in Eqn

13. The discrete time transfer function shown in Eqn 13 is also called the Infinite Impulse

Response (IIR) filter and can be written in the form of an ARMA model. The basic

ARMA model is the SISO model which has the form

y(k)= -aly(k-1) -a2 y(k-2) -...- apy(k-p) +b0 u(k) +blu(k-1) +...+bpu(k-p) (14)

where u(k) are the discrete values (at time kh) of the various input functions, and y(k) are

the discrete time values of the response. The variable z in Eqn 13 is also known as the

forward-shift operator. The forward shift-operator shifts the discrete time index by 1,

z [y(k)] = y(k+l) (15)

The discrete time transfer function is only an approximation to the continuous time transfer

function. Variations in the input between sample instances do not affect the output

according to the discrete time transfer function, although such variations will affect the

output of the actual system. Notice that two different time functions can have exactly the
same z-transform.

An alternative formulation of the discrete time transfer function is given in

Appendix A. The derivation begins with the state space representation of a system and

ends with the discrete time transfer function. The only approximation used in the

derivation is the assumption that the input is constant over the sample interval.

Transformation to the Discrete time domain

Ideally, to transform a transfer function in the Laplace domain to the time domain,

the substitution
s = hjln z (16)

would convert the Laplace transforms to z-transforms. The main difficulty with the

conversion is that the transfer function will not reduce to a simple form. The resulting form
will contain terms involving the logarithm of z, which do not have the convenient definition

of the forward-shift operator, Eqn 7. One would like to have a substitution approximately
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equivalent to Eqn 16 that would result in discrete time transfer functions that were ratios of

polynomials in z. Such substitutions are commonly used in digital control engineering.

The simplest are the forward rectangular rule,

s Z h(17)

and the backward rectangular rule,
z- 1-1- (18)

The most popular approximation is Tustin's rule,

2 z-1
Sz+(19)

The forward rectangular rule is the Euler integration scheme. The backward rectangular rule

corresponds to backward differencing and Tustin's rule is trapezoidal or Modified-Euler

integration. The input is assumed to be constant in the forward and backward rectangular

rules and varies linearly in Tustin's rule. The rules are approximations of Eqn 8, the

expansion of Eqn 8 is
00

sh (sh)n (sh) 2  (sh)3sh (h

z=e = -- =l+sh+-- + '- "- + ''"  (20)
n=0

The forward rectangular rule is the two-term approximation of Eqn 8. The backward

rectangular rule is expressed as
00

z = II h= 1 +sh + X(sh)n (21)

n=2

which is a two-term approximation plus an over approximation of the remaining terms.

Tustin's rule is expanded as
00

+sh (sh)2 (s. n

z=- I +sh+--+ (22)
n=3

which is a three-term approximation plus an over approximation of the remaining terms.

The reason that Tustin's rule is the most popular approximation is that it maps

stable poles in the Laplace domain to stable pole locations in the z-domain and it maps
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anstable poles in the Laplace domain to unstable pole locations in the z-domain. The

forward rectangular rule maps unstable poles in the Laplace domain to unstable pole

locations in the z-domain but maps some stable poles in the Laplace domain to unstable

pole locations in the z-domain. The backward rectangular rule maps stable poles in the

Laplace domain to stable pole locations in the z-domain but maps some unstable poles in

the Laplace domain to stable pole locations in the z-domain. References 3 and 4 describe

these approximations in some detail.

Applications of ARMA models

The accuracy of the approximations discussed in the previous section improves as

the sample rate increases. All three provide nearly the same discrete time transfer

functions. The approximations have received extensive use in digital control engineering.

A crude procedure in control engineering is to analytically design a compensator in the

Laplace domain, transform it at a high sampling rate to the z-domain, and then use a

controller to implement the discrete time transfer function of the compensator (reference 4).

The primary application of the methods discussed in this report is not system
control but is focussed on the discrete time transfer functions or ARMA models when used

for vibratory prediction of complex multiple-degree-of-freedom systems. The

approximations are useful in discovering what considerations are necessary to make the

discrete time transfer function an attractive and accurate means of predicting vibration. The

approximations suggest that a high sample rate may be needed to increase the accuracy,

although, a high sample rate increases the computational load of the prediction.

Other control-oriented applications of the ARMA model include digital filtering

(references 5 and 6) and identification of chemical processes (reference 7). Structural

applications of the ARMA model include substructure modelling (reference 8), probabilistic

simulations (reference 9), spectral estimation (reference 10), and vibratory parameter

extraction (reference 11).

Advantapes and Disadvantages of the ARMA model

There are advantages to the use of the ARMA models in identification and

prediction. The ARMA model is a minimum parameter model; it therefore requires the least

number of parameters to characterize the system. Consider an N degree of freedom, linear

dynamic system which can be modeled as N second order, ordinary differential equations.

The 2N states of this model can be expressed as the generalized coordinates and their first

time derivatives. A fully coupled system with viscous damping would require 3(N 2 +N)/2

parameters (assuming symmetric mass, damping and stiffness matrices) to completely
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define the system. Solution of this system of equations would provide the complete spatial

distribution for the structure at any instant in time. An alternate form of the system model

could be a single ordinary differential equation of order 2N. The states of this model would

be a single generalized coordinate and all of its derivatives up to order 2N. For free

vibration response, this equation could be characterized using only 2N-1 parameters. The

solution would yield a single state and all of its derivatives up to order 2N. The second
form is a minimum parameter model. An equivalent ARMA model would also be a
minimum parameter model.

The SISO ARMA model's states are discrete time values of a single input and single

output at a given instance in time and at a finite number of previous instances. The model
state for a pth order model contains the system output at p previous time instances and the

system input at p+l time instances. The model state at the next time instance is found by

incrementing all the states at the current time by 1. The identification and prediction

procedures for the ARMA model require the minimum number of measured quantities.

Only the system input and response need be measured. For instance, if the response is

acceleration at some location, velocity at that location need not be known to identify the
model. Once the parameters of the model are known, prediction can be quickly

accomplished, given the input time history and the initial state of the model. The

disadvantages of ARMA models are their limited accuracy, it is an approximation, and the
identification problems associated with time domain procedures.

Examples

In the following examples, a single-degree-of-freedom (SDOF) base motion

problem and an arbitrary multiple-degree-of-freedom (MDOF) system are used to examine

the effect of sample rate upon the accuracy of the discrete time transfer function. Consider

the SDOF spring-mass-damper base motion problem shown in Figure 1, the input is
provided by the base mass and the output is the response of the free mass. The transfer

function of this simple linear system is

2CCOs + (0 2 (23
G(s) =20) + 0T (23)

s +2Ccos + (0

A discrete time transfer function can be found through any of the approximations discussed

above. Tustin's rule (Eqn 19) will be used for the example presented here. The parameters
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Figure 1: Schematic of the SDOF base motion system.
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and accuracy of the discrete time transfer function depend upon the sample rate. It is
convenient to compare the different transfer functions through the use of the magnitude
frequency response plot. The frequency response is found by the substitution of s=j(2ntf)

into the transfer function. The magnitude frequency response plot is found by plotting the
magnitude of resulting complex expression versus frequency, f. The magnitude frequency
response plot shows graphically the output gain of the system versus the input frequency.
The phase of the frequency response also contains valuable information, but the meaning

of the magnitude plot is easier to interpret and will be used for illustrative purposes. Note

that the magnitude frequency response plot of the discrete time transfer function requires
the substitution of Eqn 2 prior to the substitution of s=j(2tf). The transformation from the

discrete time domain to the s domain is not an approximation. Also the frequency response

function for the discrete time equivalent can be evaluated at any frequency value by the

computer.
The natural frequency of 10 Hz and damping factor of 1 percent critical were used

in Eqn 23 for the example. The magnitude frequency response plot of the transfer function

is shown in Figure 2 along with the magnitude frequency response plots of the discrete
time equivalents obtained through the use of Tustin's rule at two different sample rates.

The discrete time equivalents using the higher sample rate (200 Hz) is approximately
equivalent to the transfer function from 0 to 20 Hz. The discrete time equivalent using the
lower sample rate (50 Hz) is approximately equivalent to the transfer function from 0 to 5

Hz. This would imply that the sample rate of the discrete time approximation would have
to be at least 10 to 20 times the base bandwidth of input signal to get accurate vibratory

predictions.
An arbitrary MDOF system was also used to compare the effect of sampling rates

upon the accuracy of the discrete time model for a more complex system. The arbitrary

system was generated by randomly placing poles and zeros of the transfer function in the
Laplace domain. Figure 3 shows the magnitude frequency response of an arbitrary system
(a 4 DOF system) along with the magnitude frequency response plots of the discrete time
equivalents obtained through the use of Tustin's rule at two different sample rates. The
discrete time equivalent at the I kHz sampling rate is approximately equivalent to the
arbitrary transfer function over the entire frequency range plotted (0 to 75 Hz). The
discrete time equivalent at the lower sampling rate (200 Hz) is only accurate up to about 20
Hz. Predictions of system response to simulated inputs using the discrete time equivalents
in the form of ARMA models (Eqn 8) were compared to those calculated through standard

numerical integration (fourth order Runge-Kutta). A periodic input comprised of three unit
amplitude sinusoids at frequencies of 2, 30, and 50 Hz is shown in Figure 4. Inspection of
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the magnitude frequency response plots indicates that the discrete time equivalent sampled

at I kHz should have virtually the same response as the continuous time system at these
frequencies and the discrete time equivalent sampled at 200 Hz will not be as accurate at the
higher frequencies. Figure 5 shows the response predicted by the ARMA models in

comparison to the numerically integrated response. (The predictions are determined

through knowledge of the input and model parameters only; the response is calculated
recursively and the initial conditions are assumed to be zero.) Figure 5 shows that both

predictions are highly accurate. One would have expected the discrete time equivalents at
the higher sampling rate to be accurate, and the errors of the discrete time equivalent at the
lower sampling rate to be small, since the magnitude of the response is so low at the higher

input frequencies.

Figure 6 shows a pseudo-random input (Gaussian noise with a unit variance) which

should provide a very broadband excitation for this system. The bandwidth of the signal
was reduced to approximately 0-50 Hz through the use of a digital filter (an 8th order

ARMA approximation of an 8 pole Butterworth filter). The magnitude frequency response
of the filter is shown in Figure 7. The filtered broadband input is shown in Figure 8. The
filtered input was then applied to the i5 -tcin. The predicted responses, based on the
discrete time equivalents, are shown in comparison to the numerically integrated response
in Figure 9. The ARMA approximation prediction at the high sampling rate follows the

numerically integrated response very closely (within the resolution of the plot). The
ARMA prediction for the lower sample rate is not quite as accurate, but for many

applications it would be considered to be an adequate representation of the system

response.

Overview
The discrete time transfer function has been shown to provide an accurate prediction

of simulated response when the sampling rate is at least 10 to 20 times larger than the
bandwidth of the input. The discrete time transfer functions used in the examples were
developed through analytical approximations and the errors are due to those
approximations. The discrete time transfer function assumes that the input is constant over
the sampling interval. Even if a discrete time transfer function could be found that did not
use t1~e approximations, the sampling rate would conceivably have to be at least 10 times
higher than the bandwidth of interest to realistically represent the input function. Although

Shannon's Sampling Theorem (reference 4) states that only two points per cycle are needed
to reconstruct a signal, it is well known that the sampling rate needs to be 10 to 20 times the
bandwidth upper limit to accurately perform numerical integration for most numerical
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integration algorithms. The discrete time transfer function in the form of an ARMA model
is a numerical integration scheme requiring similar sampling rates. The parameters of the
ARMA model are just weights of the numerical integration scheme. The goal of this report
is to investigate methods for determining these weights from real experimental structural
response data, so that the ARMA model can be determined from experimental
measurements and then used to predict vibration response. The following sections describe
numerical methods that can be used to estimate the parameters of the ARMA model.
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PARAMETER IDENTIFICATION

The goal of system modeling and parameter identification is to decide on the form
of the model and then identify the parameters of the model. Often the choice of the model

form and parameterization of the model are done at the same time. Here, the focus is on the
use of the discrete time transfer function or the ARMA model for structural vibratory
prediction. The model form is fixed except for the choice of the size (or order) of the
model. Experimental data from the structure itself are needed to determine the proper

order. Once the order is selected, experimental data are used to parameterized the ARMA
model. Some consideration must be made of the choice of experimental data and the data
acquisition procedures. Once data are collected, an identification algorithm must be chosen

to parameterize the model. This section describes some of the difficulties in data
acquisition procedures and model order selection based upon the free response

autocorrelation matrix.

Data Acquisition and Filtering

In order to parameterize a SISO ARMA model, one needs to simultaneously
measure the input and output time series. Usually the data is acquired with the aid of anti-
aliasing filters. The anti-aliasing filters are low pass filters which are used to limit the
bandwidth of the experimental signals. They are helpful in eliminating high frequency noise
and high frequency modes. The filters truncate a high or infinite degree of freedom system
to a lower order system with modal frequencies in the allowable, selectable bandwidth. An
ideal low pass filter causes no phase or magnitude distortion of the sinusoidal components
of the signal below the cutoff frequency and truncates the sinusoidal components of
frequencies above thc cutoff frequency. Practical low pass filters distort the phase and
magnitudes of the sinusoidal components of the signal below the cutoff frequency and only
attenuate the higher frequency components. Low pass filters distort the signal frequency
according to the filter's transfer function. The Fourier transform of the signal prior to
filtering (Xin(w)) is altered to yield,

Xout (C) = F(C0) Xin (CO) (24)

where F(o) is the frequency response of the low pass filter. The z-transform is

analogously altered by the filter

Xou t (z) = F(z) Xin (z) (25)
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where F(z) is the discrete time equivalent of F(o). When both the measured input and the

output time series have been conditioned by filters, the discrete time transfer function

between the measured input and the output time function is

Y(z) Fy(z)
G(z) =- (26)

U(z) Fu(z)

where Fu(z) and Fy(z) are the discrete time transfer functions of the input and output anti-

aliasing filters. The discrete time transfer function, G(z), will be unaffected by the filters

when the two anti-aliasing filters have the same frequency response function. Thus, if

filters are identical and are set at the same cutoff frequency, the identification procedure can

treat the measured response as if it had not been filtered.

If the filters are not identical, then the measured data must be corrected so that the
filters do not affect the transfer function. The correction takes place in the frequency

domain using the convolution properties of the Discrete Fourier Transform (DFT)

(reference 12). The measured time series is first converted into the frequency domain using

an FFT. The DFT of the signal is corrected to compensate for the filter and the corrected

frequency domain response is converted back into the time domain using an inverse-FFT.
The difficulties with the procedure is that the DFTs have leakage and aliasing errors that

may result in a further noise corruption of measured data. Also the transfer function of the

filter must be known precisely to compensate in the frequency domain.

There is also resolution noise introduced by the digitization of the signal. The

analog-to-digital converters have a finite number of values to assign the infinite possibilities

of a voltage range. For example, 4096 values may be assigned by the computer to voltages
between +1 and -1 Volt. If only 10 percent of the voltage range is used, only 410

different values would be used to define the continuously varying signal. The resolution
noise is reduced by using as much of the entire voltage range as possible, thus amplifiers

may be needed. The amplifiers may introduce more noise but, one hopes, not as much as

the resolution noise. Also, the amplifiers may introduce additional distortion of the signal,
since the amplifiers have a transfer function of their own. The goal of the data acquisition

process is to digitize the input and output time functions while minimizing the noise and

distortion.
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System Order
Once data are taken, the ARMA model can be parameterized. The order of the

ARMA model has to be selected for a given system. The order of the ARMA model given

in Eqn 14 is the size of the integer p. If the system order is unknown apriori, it has to be

arbirarily selected or determined from experimental data. The free response can he used to

determine order. Consider what happens to Eqn 14 when there is no input: the model

reduces to

y(k) = -aly(k-1) - a2y(k-2) -... -apy(k-p) (27)

where the parameters, the a's, are known as the Autoregressive parameters of the ARMA

model. Equation 27 can be put in the form

[zP + alzp-l+ ...+ a Pz + ap] y(k) = C(z) y(k) =0 (28)

Processes, like y(k), that satisfy Eqn 22 are called Autoregressive (AR) processes. The

model given by Eqn 27 is called an AR model. Note that the order of the AR model for

system free response is identical to the order of the ARMA model for system forced

response.

A summation of damped sinusoids, the free response of linear structural systems,

can be modeled exactly as an AR process. (See Appendix B.) Furthermore, the order of

the AR model is twice the number of modal frequencies or number of degrees of freedom

in the system. The modal frequencies and damping factors can be extracted from the roots

of C(z), termed the characteristic equation in the time domain.

A crude procedure for determining system order is to count the number of peaks or

modes in the the power spectrum of the system's free response or count the number of

peaks in the system's frequency response plot (often automatically displaced on a spectrum

analyzer). Problems occur when the signal is too noisy, the modes are too closely space to

distinguish separate peaks, or one or more of the modes is highly damped, reducing the

size of one or more peaks. Though the procedure can be effective for selecting order, it is

not well-suited for digital automation. A method better suited for automation depends

upon the discrete time free response autocorrelation matrix. Consider an AR process of

order p given by Eqn 28 rearranged as
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ak y(m-k) =0 , a0 = 1. (29)
k=o

If Eqn 29 is multiplied by y(q-m) and the expected value taken, the result is the well known

autocorrelation relation (reference 13)

Sak Ryy(q+k) = 0 (30)
k=0

The autocorrelation matrix, arbitrarily dimensioned mxm,

{Ryy(0) ... "Ryy(m)1
R yy . .. (31)

k Ryy (m) ... R yy(0)

only has p linearly independent columns (if m>p). Thus it is possible to determine system
order by determining the rank of the autocorrelation matrix. The only difficulty is in
accurately estimating the autocorrelation matrix. Consider the measured time series

x(k) = y(k) +n(k) (32)

where y is the signal, n is the noise, and x is the measured signal. The autocorrelation
matrix of the signal is estimated by the autocorrelation matrix of the measured signal whose

autocorrelation matrix is
1N-m

SRx x j = 7 Y x(k+i)x(k+j) (33)k=l

where N is the number of data points and m is the size of the autocorrelation matrix. The
rank of a matrix can be evaluated using its singular value decomposition. (See Appendix
C.) A matrix of size m and rank p will have m-p zero singular values. The autocorrelation
matrix of y(k) will have rank p, but the matrix is unavailable since y(k) is not a measurable
value. The autocorrelation of matrix of the measured signal x(k) is available and will have
full rank due to effect of the noise present in the signal. Consider the expected value of
Rxx when the noise process is statistically independent from the signal y(k) and is an

independent identically distributed process (reference 14) with variance ;2
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E [Rxx] = Ryy + cy21 (34)

An independent identically distributed process, n(t), has statistically independent
realizations at different times but each realization comes from the same parent distribution.
The rank of kxx is thus full and not equal to the rank of Ryy. Some properties of the

Singular Value Decomposition (SVD) and symmetric matrices can be used to reduce Eqn
34 to a useable form. The Singular Value Decomposition of Ryy, since it is symmetric, is

Ryy=UX UT (35)

where U is an orthonormal matrix. The identity matrix can be represented by UUT,

reducing Eqn 34 to

E [R ]= U ( Z + 21) UT  (36)

The rank of Ryy can be determined by counting the number of singular values of Rxx

above the variance of the noise. There are at least three possible problems with such a
procedure. First, the variance of the noise is unknown. Second, Eqn 36 represents the
expected value of Rxx which can only be estimated. Third, the noise may not be an

independent identically distributed process. In fact, the expected value of the noise

autocorrelation may not be a diagonal matrix. Though there are some limitations in the use
of Eqn 36 to determine the system's order, it is a useful relation which has proven helpful
in evaluating system order.

Examples
The expected value of the autocorrelation matrix for a independent identically

distributed noise process is equal to the variance times the identity matrix. One expects a
flat singular value "spectrum" of the autocorrelation matrix. The singular value (SV)
spectrum is merely a plot of the singular values of a matrix (in decreasing order) against the
index of the singular values. Figure 10 shows the singular value spectra of unity variance

Gaussian noise for a varying number of points developed using Eqn 33. The size of the
autocorrelation matrix (20x20) was arbitrarily chosen. The figure shows that the spectrum
becomes flatter as the number of points used to estimate the autocorrelation matrix
increases. When the noise'SV spectrum is not flat, it is roughly linear with the central
signal value (in this case, value number 10) roughly equal to the variance of the noise.
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Figure 11 shows the spectrum for a noiseless 6th order AR process (512 pts). The signal
is composed of three damped sinusoids; it is therefore a simulated free response. There

should be only 6 non-zero singular values. The spectrum does drop from roughly 10 for

the sixth singular value to 2E-14 for the seventh singular value. The seventh to the

twentieth singular values range from 2E-14 to 2E-15, approximately equal to zero on the
computer used for these calculations. Figure 11 indicates that the rank of the

autocorrelation matrix is six.

Determining the rank of the autocorrelation matrix when there is no noise is

relatively simple, but when noise is present in the signal, Eqn 36 can be used. Equation 36

says that the singular value spectrum of a noisy signal is the addition of the noise and the

signal spectra. Figure 12 shows the spectra of the the noise, the signal, and the noise plus

the signal. The figure demonstrates that Eqn 36 is approximately true. With the
knowledge that the noise spectrum is roughly linear, one would be able to surmise that the

order of the system is six. Compare the ease of order determination using the singular
value spectrum versus the use of the Power Spectrum shown in Figure 13. A structural

dynamicist would be able to recognize that there are three significant peaks, but automating

such a decision might be rather difficult. The problem is aggravated when there are closely
spaced modes. Figure 14 shows the singular value spectra of a sixth order system with a
pair of closely spaced modes (specifically at 14.6 and 15.0 Hz, which are roughly one DFT

frequency bin apart) when the random noise is added. Extending the linear noise portion of

the spectrum back indicates that a sixth order model is appropriate. The power spectrum

shown in Figure 15 is ambiguous. It is very difficult to tell if there are three modes present

or if the spectrum is noisy. The singular value spectrum may not be a "foolproof' method

to select the system order, but the decision process when using the singular value spectrum
is less subjective and more automated. If there is some doubt, the higher order model

should be used because overspecification of the system order is not disastrous. An
overspecified model may perform as well as a model with the proper order, but an

underspecified model will not.

Overview
The problems of data acquisition and order selection were briefly discussed in this

section. Free response can be used to determine system order through inspection of the
singular value spectra. It must be noted that often it may be difficult or impossible to obtain
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free response or the impulse response data. The system order may have to be selected

while parameterizing the ARMA model. This can be accomplished by increasing the order

of the ARMA model during the identification procedure until the estimated model is

acceptable, by some measure. The resulting order of the ARMA model may not be the

same as it would be using free response, and the ARMA model may end up being

excessively large. Even if the free or impulse response is available, the proper order may

not be selected as shown by the examples. Given an estimate of the ARMA model order

and experimental data, the next step is to estimate the ARMA model. The next section

presents identification procedures to do the ARMA parameter estimation.
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IDENTIFICATION OF THE ARMA MODEL

This section presents some classical time domain identification methods that use

experimental data to estimate the parameters of the ARMA model. The experimental data is

used to write an overdetermined set of equations. The most straightforward way of solving
these equations is the Least Squares method. Unfortunately, the Least Squares method

produces biased parameter estimates. Many other methods exist that attempt to reduce the

bias in some fashion. Some of these methods are included here.

The ARMA model

The ARMA model contains transient response terms, the AR part of the model, and

forced response terms, the MA part of the model. The model can be written in vector form

as

ym(k) = [-Y(k-1) -Ym(k-2) ... -Ym(k-p) qn(k) u%(k-1) %(k-p)]O + e(k) (37)

where the subscript m denotes measured quantities, e(k) denotes a residual or error, and

0=[aI, a2 , ... , ap, b0 , bI , ...,bp]T (38)

Identification algorithms are used to estimate the parameter vector, 0, by some criteria

given multiple equations produced by varying the index k in Eqn 37. In order to identify

the parameters of the ARMA model, Eqn 37 must be written for at least 2p+ I different time
instances. If the data is exact and from an ARMA process, the exact parameters can be

found by solving the 2p+1 equations. When noise corrupts the measured input and output
discrete time histories, it is impossible to determine the ARMA model parameters exactly.
An estimate of the parameters can be made by solving an overdetermined set of equations

(more than 2p+l equations). There are various methods to solve this set of equations. The

methods have varying criteria and will be presented in the following sections.

The Least Squares (LS' algorithm
The Least Squares algorithm solves the overdetermined set of equations by

minimizing the sum of the squares of the residuals. If there are N data points in each time
history, N-p equations can be written, where p is the model order. The equations in matrix

form are
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Am 0 =gm + e (39)

where gm=[ym(p+l), ym(p+ 2 )..... ym(N)]T (40)

e=[e(p+l), e(p+2),..., e(N)IT (41)

and

ymY(p) ...- Ym(1 Um(P+l)... um(l)

-ym(P+l)... -Ym(2) urn(p+2) ... urn(2)

Am= (42)

-Ym(N- 1)...-Ym(N-p) urn(N) ... Umn(N-p) -

Solving Eqn 39 by minimizing the sum of the squares of the residual is equivalent to

solving a set of equations termed the normal equations,

(AmTAm) 0 LS = AmTgm (43)

The solution of the normal equations is

0 LS= (AmTAm) - I AmTg m  (44)

where the term (AmTAm) 1 AmT is referred to as the pseudo-inverse of Am. The normal

equations become highly ill-conditioned as either the sample rate or the number of

parameters increase. One method to reduce the ill-conditioning problem is to solve the

overdetermined set of equations through a technique termed singular value decomposition.

Solving the equations by singular value decomposition will result in a LS estimate, but the

equations are solved in a different fashion. (See Appendix D.)

The bias in the Least Squares estimate is apparent when Eqn 39 is premultiplied by
the the pseudo-inverse of Am, resulting in

0 LS = 0 - (AmTAm)" I AmTe (45)

Taking the expectation of Eqn 45, yields
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E ILS ] = 0 - E [(AmTAm)-I AmTe] (46)

Equation 45 shows that the LS parameter estimates are biased by the E[(AmTAm)-l

AmTel term. It has been widely recognized that the LS estimates are biased (references 15

and 16). This sensitivity of the LS estimates to noise often makes the estimates unreliable.

Usually an overspecification of the model order, which will be discussed later, or an

iterative technique to improve the estimates can be used to reduce the bias.

Generalized Least Squares

The Generalized Least Squares (GLS) algorithm is an iterative technique used to

improve the biased LS parameter estimates. The algorithm attempts to reduce the noise

bias by modelling the residuals. The residual process is modeled as an Autoregressive

(AR) process
0 = C(z) e(k) -c(k) (47)

where e(k) is another residual process. The model of the system is an ARMA model

A(z) ym(k) = B(z) u(k) + e(k). (48)

Multiplying Eqn 48 by C(z) and using Eqn 47, yields

A(z) C(z) ym(k) = B(z) C(z) um(k) + s(k). (49)

If one defines C(z) ym (k) as x(k) and C(z) um(k) as z(k), then the new system model is

A(z) x(k) = B(z) z(k) +E(k) (50)

which is the basis for the GLS algorithm. The GLS estimate of the system model is the LS

estimate using the transformed processes x(k) and z(k). The GLS algorithm in step form

is:
1. Estimate 0 LS ( Eqn 44).

2. Calculate the residual sequence e(k).
3. Model the residual sequence as an Autoregressive Process.

4. Generate x(k) and z(k).
5. Compute OGLS: the LS estimate of (Eqn 50).

6. Go to Step (2) until 0 GLS converges.
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The GLS algorithm replaces the residual process of the LS estimate, e(k), by the residual
process of the Generalized Least Squares estimate. The bias of the GLS estimate is
hopefully smaller than the bias of the LS estimate because e(k) will be of smaller

magnitude than e(k).

Reference 17 proposed a modification of the GLS algorithm called Modified Least
Squares (MLS) estimation algorithm. The MLS algorithm also models the residual process

as an Autoregressive process. The algorithm is noteworthy because it readily demonstrates

the effect of the residual model. Equation 44 is rewritten as

0 = 0LS + (AmTAm)-1 AmTe (51)

If e is estimated as an AR process, then there is a set of overdetermined equations based

upon the residual sequence

e = C + e (52)

The residual of Eqn 52, e, is neglected and the Modified Least Squares estimate is written

from Eqn 51 as
0 MLS= 0 LS + (AmTAm)"1 AmT a C (53)

The Generalized Least Squares algorithms model the bias term and add the result to the LS
estimate in order to improve the estimate. The difficulties of the GLS algorithms are that
they are iterative (and thus prone to computational stability concerns) and the size of the

residual model has to be specified.

Instrumental Variables

The GLS method relies upon the AR model of the residuals to, in a sense, estimate
the bias of the LS estimates and therefore better estimate the parameters. The Instrumental
Variable (IV) technique attempts to force the bias towards zero by proper selection of a

different "pseudo-inverse." Suppose that a matrix, Z, could be found so that

E[ZTe] =0

and E[ ZTAm] = R (54)

where R is a non-singular matrix. The "pseudo-inverse" of (ZTAm y I ZT can be formed.

Premultiplying Eqn 41 by this "pseudo-inverse" yields
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iv= 0 - (ZTAm)-I ZTe (55)

where Oiv = (ZTAm) "1 ZTgm (56)

Here the expected value of the IV estimate is the parameter vector. The main problem with
the IV method is the selection of Z . The matrix Z is comprised of instrumental variables
and is structured similar to Am. The instrumental variables should be correlated to the

noise-free signal and uncorrelated to the noise. The perfect set of instrumental variables is

the noise-free signal itself which is unavailable. An auxiliary model can be used to generate

the instrumental variables and hence the matrix Z. Reference 18 has shown that any stable
model of the same order as the system provides consistent unbiased IV estimates, when

there is no noise in the input measurements. The Z matrix is constructed from the
instrumental variables by substituting Z for Am and the output of the auxiliary model for

the output of the system. Reference 15 has also assumed that the input is free of noise. The

assumption that the input is noise free may be valid in control engineering where the input

can be a reference voltage but the input will surely contain noise in structural applications.

Maximum Likelihood Method
The Maximum Likelihood Method (MLE), like the GLS algorithm, assumes that the

residual sequence is an AR process and uses the model

e(k) = ±aiym(k-i) + ibium(k-i) + icie(k-i) (57)
i=O i=O i=O

The parameters, the ai , bi, and ci , are estimated to maximize the probability of the C(k)

sequence under the normal probability density function. References 3 and 19 give an
iterative algorithm to perform the estimation. The major difficulties with the MLE method

are that the method is iterative and the assumption of normal residuals may not be valid in
many cases.

The Overspecified LS model
The main difficulty with the time domain estimation of the ARMA model is the

estimation bias. The LS algorithm has been modified to produce the other major algorithms
in hopes of reducing or eliminating the bias. The major difficulties of the algorithms are
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that they are iterative in nature and lack the simplicity of the LS algorithm. In order to

implement the LS algorithm one needs to "measure" the time series data, form matrices of

the proper order, and invert a single matrix. There are no convergence considerations. An

alternative way to reduce the bias is to overspecify the LS model. The additional

parameters serve as additional modes which may be used to effectively model the noise. If

the noise is adequately modeled, the residuals are reduced and the estimation bias is

reduced. However, the overspecified model will contain extra poles and zeroes related to

the noise. If the overspecified model is used to predict vibration, the noise modes will still

be present. Usually the noise modes in the overspecified model are of such a low

magnitude that the prediction is unaffected.

Examples

Four computer programs based on the LS, the GLS (actually the MLS form of the

GLS algorithm), the IV (as proposed in reference 18), and the MLE (according to reference

19) were completed and simulated data contaminated with noise was used to test the

algorithms. The Laplace domain model of the test system was

G(s)=(2s+100) / s2 +2s+100) (58)

which was transformed by Tustin's Bilinear rule (sampled at 400 rad/sec) to

2
0.02141 z + 0.01207 z - 0.009335

G(z) = z 2 1.945 z + 0.969 (59)

in the discrete time domain. Input time histories were developed to model random input to

the system. Random numbers (uniform distribution) were determined to represent the input

time increments. The magnitude of the input was gaussian. If the input time increment was

greater that the system sample time, the input was assumed to vary linearly between input

specification times. This was a simple attempt to set the "wave" length and spectrum of the

input time series. The random time series was used as input to Eqn 59 to produce a noise-

free system output time series. The output was then contaminated with simulated Gaussian

noise at an signal-to-noise ratio (SNR) of 40 dB. The signal-to-noise ratio is defined as
Arms

SNR = 20 logl 0  (60)
anoise
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where Arms is the root mean square amplitude of the noise-free signal. Figures 16, 17,

and 18 show three different random inputs that were used in the numerical experiments.
Table I shows the parameter estimates of the four algorithms for each case.

It is clear that the IV method gives the best estimates of the AR parameters. The
MA parameters are difficult to obtain and the estimation success is dependent upon the

excitation (the input). The third input, which has the widest excitation range, appears to
provide the best parameter estimates. This is related to the concept of persistent excitation

and has not been discussed as yet. A persistent excitation is an input that provides enough

information so that the Moving Average parameters can be accurately estimated. Though

all three inputs appear to be persistently exciting, there seems to be an optimal input among

the three. The concept of optimal input is discussed in reference 20.

The LS estimates are biased when noise is present. System parameters developed

using a non-overspecified LS approach would not be suitable for predicting vibratory

response. Among the three iterative methods, the IV method was the most accurate

method, the easiest to program, the quickest computationally, and the most stable method.
The main difficulty with the IV algorithm is the generation of the instrumental variable.

The method suggested in reference 15 requires that the input must be noise-free to insure
convergence. If the input is a control system reference voltage, the assumption of noise-

free input is valid. If the input is a structural measurement, the assumption is invalid.

Overview

A number of parameter identification algorithms have been discussed. All the

algorithms are schemes to solve an overdetermined set of equations in order to estimate the
parameters of a model. The key difficulty to be overcome is the effect of noise bias. Many

of the algorithms utilize an iterative scheme to model the noise and improve the parameters.
Other non-iterative algorithms simply overspecify the model order and use the additional
modes of the model as a noise outlet. Usually the overspecified algorithms out-perform the

iterative schemes both in computer cost and accuracy. The difficulty with the

overspecified algorithms is the sorting of the noise modes from the true modes of the

model. Time domain modal techniques such as the ITD and the ERA also use
overspecification to reduce noise bias. These techniques use modal confidence factors
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Table 1: Parameter Estimates

al a2 b0 bl b2

True values: -1.945 0.969 0.0214 0.0121 -0.00934

Input = Case 1

LS -1.740 0.769 0.148 -0.116 0.00016

GLS -1.875 0.892 0.135 -0.143 0.0238

IV -1.947 0.971 0.128 -0.196 0.0929

MLE -2.802 1.654 0.383 -0.712 0.176

Input = Case 2

LS -1.829 0.858 0.040 -0.024 0.0190

GLS -1.860 0.884 0.034 -0.012 0.0085

IV -1.942 0.967 0.040 -0.022 0.0094

MLE -2.674 1.745 0.064 -0.070 -0.0307

Input= Case 3

LS -1.788 0.812 0.0194 0.0154 -0.0041

GLS -1.857 0.877 0.0208 0.0138 -0.0059

IV -1.941 0.966 0.0197 0.0128 -0.0082

MLE -1.924 0.949 0.0207 0.0116 -0.0087
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developed from mode shape information to sort the noise modes. The simplest and most

efficient technique to identify an SISO ARMA model is to overspecify the model order

before using the LS algorithm. But since there is no method at present to reduce the

overspecified model once it has been estimated, the predictive model would be excessively

large and contain noise-related modes.
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FREE RESPONSE METHODS

The ARMA model can be identified in a single stage using the algorithms discussed
in the previous sections or in two separate stages. In a two-stage method, the AR

parameters are identified separately from the MA parameters. The AR parameters can be
identified from free or impulse response records. Also, if the the frequencies and damping
factors are known, the AR parameters can be indirectly identified. All of the algorithms in
the preceding section can be modified slightly to identify the AR model from free response.
In addition, there are many time domain procedures that are used to estimatc structural

frequencies and damping factors. Among these are the Ibrahim Time Domain Technique
(ITD), the Eigensystem Realization Algorithm (ERA), and the Complex Exponential

Method (CEM). Essentially, these algorithms identify the pole locations in the z-plane.
The poles locations can be used to identify an AR model. The algorithms can also be used
to identify the complex mode shapes of the structure. These methods require free response
or impulse response of the structure measured at many locations on the structure. Ideally,

the AR model can be identified from a single signal. The structural identification
techniques require more data and produce more information than might be desirable for the
transient response prediction problem which this report addresses. There exists many
algorithms in the signal processing field such as Prony's method, the Pisarenko Method,
and the Principal Eigenvectors Method (PEM) which identify the frequencies and damping
factors from a single response record. Recently, these signal processing tech iques have
made inroads into the structural identification field. The signal processing and the time
domain modal methods are all linear prediction methods (reference 13) and are non-
iterative. The major means of reducing bias errors using linear prediction is to overspecify

the system order. The overspecification produces extraneous poles which must be
distinguished from the signal poles. The time domain modal methods are able to
distinguish the poles by building modal confidence factors. The modal confidence factors
are determined by comparing the mode shapes of the two separate identifications. The
signal processing techniques do not identify mode shapes and the extraneous poles must be
distinguished from the signal poles by some apriori knowledge. The PEM can be modified
slightly to automatically determine which poles correspond to the signal and which

correspond to the noise.

The AR model
The Autoregressive model given by Eqn 27 can exactly model a signal comprised of

damped sinusoids (Appendix B). The roots of the time domain characteristic, Eqn 28, are
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directly related to the frequencies and damping factors by Eqn 8, where z and s are complex
numbers. The frequencies and damping factors are related to the roots of the characteristic

equation by
si = ±j .o d  (61)

when substituted into Eqn 8 yields

zi= esh= e - &)h (cos t.dh + j sin (od h1) (62)

Thus, if one is able to model a signal as an AR process, a characteristic equation can be

written using the AR parameters. The rocs of dhe characteristic equation define the
frequencies and damping factors of the sinusoids present in the signal. Conversely, if the

frequencies and damping factors are known, the AR model can be determined using the

approximations outlined above.

The locations of the poles, roots of the characteristic equation, in the z-plane are

defined by the frequencies, damping factors, and sample rate in Eqn 62. One sees that the
stability region (C > 0) in the z-plane is inside the unit circle. Lines of constant damping are

decaying spirals and lines of constant damped natural frequencies are straight lines as
shown by Figure 19. According to Figure 19, the root locations get closer to the (1,0)
point in the z-plane as the sample rate increases. As the root locations get closer to the
(1,0) point, perturbations in the root locations result in greater errors in frequency and

damping estimates. Figures 20 to 25 show the error envelopes for frequency and damping
estimates for various root location perturbations. For instance, Figures 21 and 22 show

that the identified damped natural frequency will be in error by around 10% as the root

location travels to the (1,0) point (for a perturbation radius of 0.01) and the damping
estimate will be in error over 400%. The figures show that damping error is much more
sensitive to the exact damping value than is the frequency estimate and the size of the
frequency envelope is approximately linear with respect to the perturbation size (See

Appendix E.) The figures are different from those calculated in reference 2. The figures
illustrate that when the sample rate is high and the damping factor is low (as with most
identified structural systems), the roots of the characteristic equation must be identified very

accurately for reliable estimates of frequency and damping factors and hence reliable
vibratory response prediction. This means that the identification scheme must be accurate

in the parameterization of the characteristic equation.
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Pisarenko Harmonic Decomoosition

The first method discussed is the Pisarenko Harmonic Decomposition Method

(PHD) and is also called the Total Least Squares (TLS) algorithm (reference 21). The PHD

method is based upon the autocorrelation of an AR process. Equation 30 is written p+1

times and the AR coefficients are determined through an eigensolution.

=0

LRYp ... RyO)LaI

or
Ryy 0 = 0 (63)

But Ryy is unavailable and Rxx must be used instead. Substitution of Eqn 34 into Eqn 63

yields

(Rxx,-y2 1 ) 0 = 0 (64)

which is an eigenvalue problem. The parameter vector is the eigenvector of Rxx which

corresponds to the eigenvalue equal to the variance of the noise. Since the variance of the
noise is not known apriori, one of the eigenvalues has to be chosen as the noise eigenvalue.

Typically, the signals have a signal-to-noise ratio greater than 1, and the noise eigenvalue

will be the eigenvalue with the lowest magnitude.

The Correlation Fit

Reference 21 suggests another methods based upon the autocorrelation relationship.

The method is called the Correlation Fit (CF). In the CF method, Eqn 30 is written more

than p times

RXX() .. Rx I i-- a, (XI
Rxxiq 1)..i. xiq-p)_a P) - R x6(q)1
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with Rxx used as an estimate of Ryy. The Rxx(O) term in the autocorrelation matrix is the

most corrupt with noise because its expected value contains the variance of the noise, while
the expected value of the other Rxx terms are the corresponding Ryy terms. The CF
eliminates the first p equations in Eqn 65 because these equations contain the Rxx(O) terms.

The remaining q-p equations can then be solved in a Least Squares fashion. Reference 21
compares the CF to other methods.

Overspecification of the AR model
Reference 21 also discusses some of the advantages of overspecification of the AR

model. The process y(t) was assumed to be an AR model of order p

A(z) y(k) = 0 (66)

where A(z) is a pth order polynomial in z. Multiplying Eqn 66 by an arbitrary polynomial
in z of order q yields

D(z) A(z) y(k) = C(z) y(k) =0 (67)

or

[1 + cIz1+ ... + cp+qz -p-q I y(k) =0 (68)

The parameters of C(z) can determined by any of the other methods described. However,
Ryy is singular for orders greater than p, so there are an infinite number of solutions to
Eqn 68. But, A(z) is a factor of C(z), and therefore the AR parameters can be uncovered in
any particular C(z). The infinite number of possibilities for C(z) are manifested by an
infinite number of possible D(z).

The Principal Eigenvectors Method

The Principal Eigenvectors Method (PEM) of identification is a simple modification
of an overspecified LS solution. The PEM finds the unique overspecified parameter vector
with a minimum norm. The PEM sets up the LS solution from an overspecified model

T T(Am Am) 0 =Am g. + e (69)

The AmTAm matrix is a scaled version of Rxx and as such its rank is full (from the noise

contributions) even in the overspecified form. However, the first p singular values
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correspond to signal-plus-noise and the q-p remaining singular values correspond to just

noise. The matrix can be split by Singular Value Decomposition into a signal subspace,

(Am Am)signaI = 1 i i viT (70)
i=l1

and into a noise subspace
(AT Am) = i u i ViT (71)

i=p+l

where the singular values are ordered from largest magnitude to the smallest. Since, a

singular or ill-conditioned solution of the normal equations is expected and the factor A(z)
of the overspecified model C(z) is desired, the noise subspace of AmTAm can be zeroed

to reduce the effects of noise. The remaining solution is a singular solution with the useful

property of being a minimum norm solution. (The length of the the oversp::ified parameter

vector is the shortest of all the singular solutions.) The remaining noise in the matrix will

affect the factor D(z) and not greatly affect A(z). The PEM effectively modifies the

autocorrelation matrix and reduces the effects of the noise. The penalty paid for the

modification is that the AR model had to be overspecified and will contain signal poles and

extraneous poles. The only remaining difficulty is how to sort the roots of A(z) from the

roots of D(z).

The Modified PEM
The estimates of the frequencies and damping factors are improved when the model

is overspecified, but it is often difficult to distinguish the system frequencies and dampings

from the extraneous ones introduced by the overspecified model. The Modified Principal

Eigenvectors Method (MPEM) for damped exponentials (reference 22) addresses this

problem. The MPEM solves a set of LS equations using the PEM, but, because of the way

the equations have been written, the signal poles can be distinguished from the extraneous

poles. The MPEM uses the mapping in Eqn 8 to estimate the frequencies and damping

factors. The singular values of the discrete time autocorrelation matrix are obtained in the

MPEM and the order of the system can be identified in an automated fashion.

The MPEM requires expressing the AR model in the backward direction and thus

places stable poles outside the unit circle. The overspecified model is used to increase the
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accuracy of the estimation in the presence of noise. The overdetermined equations for a Lth

order backward linear prediction can be written in matrix form as

Ym(2 )  Ym(3) ... Ym(L+l)- / Ym(1 " l

Ym(3) Ym(4) Ym(L+ 2 ) c2  Ym(2) + e(2) (72)

Le(N-L)J

ym(N-L-)yn(N-L)... Ym(N) _c Ym(N-L)

or

Qm c = -dm + e (74)

The backward polynomial, the polynomial corresponding to the overspecified backward

AR model, can be written as

C(z)= 1+ clz + c2 z2 + ... + cL zL  (75)

There are p roots of Eqn 75 located outside the unit circle representing the poles associated

with the system frequencies and damping factors. There are L-p extraneous poles. The
normal equations are

QmTQm c = -QmTdm =f (76)

Again the matrix on the left hand side, QmTQm, is split into a signal subspace and a noise

subspace, and the noise subspace is zeroed. This solution of the normal equations forces

tthe extraneous poles inside of the unit circle, thereby allowing the system poles to be
distinguished from the extraneous ones (reference 22). The solution is

c= k 1 [ukf ] (77)
k=l

where Gk, uk, vk are p principal eigenvalues and eigenvectors of the singular value

decomposition of QmTQm. Reference 22 has shown that the MPEM does achieve the

Cramer-Rao lower bound for the variance of the frequency and damping estimates. Once
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the system frequencies and dampings are estimated from the MPEM, Eqn 8 can be used to

estimate the AR parameters at any sampling rate.

Examples

1. Simulated Free Response

Simulated free response records were generated and corrupted with various kinds

of noise. The major signal processing algorithms were used to estimate the damped natural

frequencies and damping factors from the corrupted response. The types of corruption

ranged from gaussian noise to correlated noise to constant bias. The simulated signals

contained one, two, or three sinusoidal components and 256 points sampled at 2 kHz. The

SDOF simulated data's natural frequency was 1 Hz with 1 percent damping. The two DOF

simulated data contained frequency components at 1 and 10 Hz, with 1 percent damping.

The three DOF simulated data contained frequency components at 1,10, and 25 Hz, all

damped at 1 percent. The sample rate was two thousand times greater than the first system

frequency which placed the pole location very close to the (1,0) point. According to the

error envelopes discussion at the beginning of this section, at such a high sampling rate the

identification routines would have to estimate the pole location very accurately in order to

accurately estimate the frequency and damping factor. In order to represent a system with

natural frequencies such as these, one would need a sample rate of at least 500 Hz (twenty

times the highest frequency). The sample rate that was used is four times greater than 500

Hz and represents an extremely difficult identification prcblem.

The algorithms used in the simulation were the LS, IV, PHD, MLE, GLS, CF,

and MPEM. The LS algorithm was used in the classical form and in the overspecified

form. The overspecified LS estimate required the apriori knowledge of the true frequency

values to sort the signal frequency from the extraneous frequencies, knowledge that may

not be available in an automated method. The IV technique is an iterative technique that

uses the past iteration's estimation to generate an improved set of instrumental variables.

Instead of iterating to improve the instrumental variables, fixed sets of instrumental

variables were used in this example. The two sets of instrumental variables are labelled as

IVperfect and IVpoor in the following tables. The IVperfect used the exact signal as the

instrumental variables and represents the best set of instrumental variables possible. The

IVpoor jsed data generated with nine-tenths of the exact frequency and represents an

acceptable set of instrumental variables. The other iterative algorithms, MLE and GLS,

were limited to two and a single iteration, respectively. The number of iterations were
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limited because the autoregressive model of the residuals often were identified as unstable

and the algorithms diverged. The MPEM was overspecified so that there would be four

extraneous poles for every signal pole.

The SDOF data was first corrupted with gaussian random noise at a signal-to-noise

ratio (SNR) of 40 dB. Table 2 shows the results from the identification algorithms. The

iterative techniques (GLS and MLE) failed to estimate the frequency and damping factors
locating the estimated poles on the real axis in the z-plane. The instrumental variables and

Pisarenko methods estimated the damping factor as negative (unstable). The better

estimates are the overspecified LS estimate and the Correlation Fit. The MPEM method

estimated the damping factor as slightly negative which would not have been identified as a

signal pole.
Next, correlated noise was added to the signal in the form of a 60 Hz noise and

constant bias. The correlated noise required additional modes to model the noise. In the

case of the 60 Hz signal one addition mode is required. In the case of a constant term, half

a mode or an increase of the order by one was needed. Each root of the AR model is

equivalent to an exponential in the signal. An added sine wave requires the addition of two

complex exponentials; an added constant requires a single real exponential. Table 2 shows

that the MPEM and the overspecified LS estimates are exact when the model was

overspecified.

An additional frequency was added to the signal and the same types of noise were

also added. Tables 3 and 4 show the frequency and damping estimates from the seven

algorithms. Again the best estimates were from the overspecified LS algorithm and the

MPEM. Since the LS algorithm requires apriori knowledge to distinguish noise and true
modes and the MPEM does it automatically, the MPEM is considered the better method.

The third set of numerical experiments compared the MPEM to the LS and CF

methods when the third frequency of 25 Hz was added. The LS and CF methods represent

the bust non-iterative methods without overspecification. The overspecified LS method
was not considered because of the inability to distinguish modes without apriori

knowledge. The added noise was uncorrelated gaussian noise and a higher signal

frequency of 50 Hz with an amplitude two orders of magnitude less than signal amplitudes.

The higher frequency represents a higher mode whose amplitude has been attenuated by a
low pass filter. The final simulation contained the higher mode noise, uncorrelated
gaussian noise at 40dB, and a constant bias. The final simulation represents real life data, a
higher mode, uncorrelated noise at a reasonable level, and an slight error in balancing
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Table 2: One DOF Simulated Data
(fd= 1 .0 Hz, =0.01, Amp=1., 4) =100, 256 pts, f5 =2000 Hz)

Algorithm grv noise 60Hz noise constant bias constant bias
40dB rms Amp=0.01 Amp=0.01 -Amp=0.5

LS
n=2 . ' 0.999 .012 0.793 .054

n=10 1.002 .023 1.000 .010 1.000 .010 1.000 .010

IV

poor 1.012 -.011 0.942 .002 1.000 .011 0.974 .060
perfect 1.008 -.006 0.911 -.023 0.999 .012 0.958 .084

PHD 0.972 -.002 1.002 -.029 0.999 .012 0.793 .051

MLE (2 iter) A' A ' 0.999 .012 0.797 .083

GLS(liter) . ~0.999 .012 0.793 .054

CF 0.999 .011 1.005 .010 0.999 .007 1.077 .238

MPEM (L=10)

p2 0.994 -.000** 0.997 .001 0.999 .011 0.791 .034
p=3 -t .t .t -t .t t 1.000 .010
p=4 .t .t 1.000 .010 .t .t t

*unable to identify

*identified as extraneous

t case not considered
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Table 3: 2DOF Simulated Data Results for 1st Mode
(fd= 1 .0 Hz, =0.01, Amp=l., 0 =100, 256 pts, fs=2000 Hz)

Algorithm grv noise 60Hz noise constant bias constant bias

40dB rms Amp--0.01 Amp--0.01 Amp--0.5
fd fd fd fd

LS
n=4* * * * 0.999 .012 0.791 .052

n=10 1.003 .014 1.000 .010 1.000 .010 1.000 .010

IV

poor 1.065 -.612 0.432 .915 1.000 .011 0.976 .057

perfect 1.040 -.595 1.033 .672 0.999 .012 0.959 .083

PHD * * 4.627 0.066 0.999 .012 0.790 .049

MLE (2 iter). * * 0.999 .012 0.797 .111

GLS (liter) * * 0.999 .012 0.791 .052

CF * 0.999 .007 1.096 .217

MPEM (L=20)

p=4 0.997 .006 0.998 .006 0.999 .011 0.788 .027

p=5 .t .t .t .t .t .t 1.000 .010

p=6 .t .t 1.000 .010 .t .t .tt

• unable to identify

t case not considered
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Table 4: 2DOF Simulated Data Results for 2nd Mode

(fd= 10 .0 Hz, =0.01, Amp=l., 0 =20', 256 pts, fs=2000 Hz)

Algorithm grv noise 60Hz noise constant bias constant bias

40dB rms Amp--0.01 Amp=0.01 Amp=0.5
fd fd fd fd

LS

n=4 10.001 .070 10.000 .010 9.999 .010

n=10 10.000 .010 10.000 .010 10.000 .010 10.000 .010

IV

poor 10.370 .020 9.636 .051 10.000 .010 9.994 .010

perfect 9.939 .013 9.958 .016 10.000 .010 9.999 .010

PHD 9.904 .012 14.969 0.002 10.000 .010 Q.999 .010

MLE (2 iter) 8.870 .108 9.880 .172 10.000 .010 10.000 .010

GLS (liter) 10.002 .070 9.885 .173 10.000 .010 9.999 .010

CF 10.002 .015 9.9971 .0166 10.000 .010 10.000 .01)

MPEM (L=20)

p=4 9.91,18 .010 10.000 .010 10.000 .010 10.000 .01

p=5 .+ . t .t .t .t .t 10.000 .010

p=6 .t .- 10.000 .010 . .t .t .t

• unable to identify

t case not considered
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strain-gage accelerometers. Table 5 shows the results from the simulated experiments.

The MPEM estimates were quite accurate.

2. Experimental Free Response

The time domain experimental free response from a SDOF system and a cantilever

beam cited by reference 23 was used to further compare the algorithms. The SDOF system

was similar to the base motion system shown in Figure 1, except the base mass was

constrained. The other mass was constrained to a motion along a single axis. The

damping was primarily provided by the bearing friction and was definitely non-viscous.

The cantilever beam was made from steel and was 37.25 inches long with a cross section

of 1.5 by 0.0625 inches. The damping was structural. All of the algorithms except the

IV estimation were used.

The results are shown in Table 6. All of the methods were able to estimate the

natural frequency of the SDOF system reasonably well, but there were considerable errors

in the damping estimation when overspecification was not used. Log decrement
procedures in reference 23 estimated the damping factor to be around 2%. The MPEM, the

overspecified LS, the PHD, and CF damping estimates were all quite good.

Only the CF, the classical (non-overspecified) LS, and the MPEM were used to

identify the cantilever beams natural frequencies and damping factors. The LS method

failed to identify the first r xe. The CF and the MPEM estimated the natural frequencies
well, but the MPEM estimate of the damping in the first mode was lower than the CF

method and on the same order of magnitude as the other modes. The MPEM estimate is

probably the better of the two (the true values are unknown, since the data is experimental

and a log decrement could not be performed).

3. Overspecification Example

The results from the simulated and experimental data show the need for

overspecification and the MPEM method to get an accurate estimate of the natural

frequencies and damping factors and hence an accurate estimate of the AR parameter

vector. An additional set of simulations were conducted using one simulated free response

record to show the effect of overspecification. The overspecification size was varied with

the LS algorithm; and the PEM and MPEM algorithms were used to demonstrate the effects

of overspecification and the minimum norm solution in the z-plane. The signal contained

frequencies at 10, 20, and 30 Hz all damped at 1%. The sample rate was chosen to be 1X)
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Table 5: 3DOF Simulated Data

(fd= 1 ,10 ,25 ; C=.01,.0l,.0l; Amp=1,l,l; 256 pts, f,=2000 Hz)

Algorithm grv noise higher mode grv, 4th mode, bias
40 dB rms Amp=.01 40 dB, A=.0l,A=.01

LS (n=6)

model I

mode 2 5.242 .362 9.974 .144 5.207 .369
mode 3 24.741 .032 25.066 .012 24.729 .032

CF

mode I' **

mode 2 9.814 .019 10.032 .016 9.822 .020

mode 3 24.988 .010 25.013 .010 24.992 .010

MPEM (L=30, p=6)
model1 1.001 .010 1.000 .010 1.000 .011
mode 2 10.000 .010 10.000 .010 10.000 .010
mode 3 25,001 .010 25.000 .010 25.001 .010

*unable to identify

t case not considered
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Table 6: Experimental Data (512 pts, fs=1000 Hz)

Algorithm SDOF MDOF: cantilever beam

1st mode 2nd mode 3rd mode
fd fd fd fd

Analytical 1.45 9.10 25.49

Estimated -1.8 -. 020

LS

n=2 1.797 .156 .t .t .t .t .t

n=6 .t .t * * 8.789 .003 24.64 .003

n=10 1.806 .022 .t .t .t .t .t .t

PHD 1.809 .023 .t .t .t .t .t .-

MLE (2 iter) 1.922 .008 .t -t . .tt

GLS (liter) 1.797 .156 .t .t .tt

CF 1.804 .021 1.515 .075 8.805 .002 24.66 .002

MPEM

L=I0,p=2 1.805 .020 .t .t .t .t .t

L=30, p=6 t t 1.512 .004 8.804 .002 24.66 .002

• unable to identify

t case not considered
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Hz (512 points) so that the system poles would be well separated in the z-plane. Random

gaussian noise was added to make the SNR equal to 20 dB.

Figure 26 shows the z-plane with the unit circle drawn. The true locations of the

poles are shown as the circles in the figure and the estimated pole locations from a sixth

order LS estimation are drawn as cross hairs. The estimated poles are very inaccurate.

The estimated frequencies are therefore inaccurate as summarize in Table 7. Figure 27

shows what happens when the order of the LS estimation is increased to twelve. There are

estimated locations very close to the true locations. Note that if the true locations were not

known, there would be no way to distinguish the noise poles from the signal poles. The

frequency estimates are reasonably accurate (1-2.5% error) but the damping estimates are

inaccurate (200-400% error). The damping error envelopes given in Figures 21, 23, and

25 confirm that slight perturbation in the estimated locations will cause the large error in

damping estimation when the damping is low (1% in this case). The order of the

estimation is increased further to 30 to increase the accuracy. Figure 28 shows the

resulting estimated pole locations and Table 7 shows that both the frequency and damping

estimates are very accurate. Notice in Figure 28 that the extraneous roots are scattered

about the unit circle. When the PEM is used with the same order, the frequency and

damping estimates are about the same, but Figure 29 shows that the extrarncous root afc

scattered in a more orderly fashion. Still there is no way to distinguish poles with apriori

knowledge; even with the "orderly" position of the poles, it would be impossible to

separate the signal poles. Figure 30 shows what happens when the MPEM is used. The

true locations of the poles are placed outside the unit circle, and the estimated signal pole

locations are placed outside also, but the minimum norm solution places the extraneous

poles all inside the unit circle. Thus, the signal poles can be differentiated from the

extraneous poles and the high accuracy of overspecification is achieved.

4. Example: Closely Spaced Frequencies

The MPEM allows for overspecification, system order determination, and automatic

sorting of signal and extraneous poles. In practice, one would input the free response data

to a MPEM program, grossly overspecify the system order, evaluate the singular values o4
the QmTQm matrix and specify how many of the principal eigenvectors to use. The

MPEM should locate the signal poles outside the unit circle. The number of principal

eigenvectors (PE) should be the same number as the true order of the system, in the

frequency range of interest, and the number of signal poles. But if the number of principal

eigenvectors is slightly overspecified, the MPEM should determine the true order by
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+ +

o Ocact locations
+ Qstimated locations

Figure 26: Estimated pole location from the LS algorithm (n=6).
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Table 7: Simulated Data (512 pts, fs=200 Hz)
(fd = 10, 20, 30 Hz, 1% damping 20 dB grv noise added)

Algorithm 1st mode 2nd mode 3rd mode
fd fd fd

LS
n=6 12.38 .227 28.38 .092 83.21 .128
n=12 10.08 .038 20.48 .039 30.36 .021

n=30 10.00 .010 20.01 .010 30.00 .010

PEM (L=30, p=6)

10.00 .010 20.01 .010 29.99 .010

MPEM (L=30,p=6)

10.00 .010 20.00 .010 29.99 .010
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Imaginary

o gxact locations
+ GstirlltQd locations

Figure 27: Estimated pole location from the overspecified
LS algorithm(n= 12).
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Imaginary

+ + RQal

10 Xact locations
+ Qatiznated locations

Figure 28: Estimated pole location from the overspecified
LS algorithm(n=30).
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Imaginary

o exact locations
+ estimated locations

Figure 29: Estimated pole location from the PEM algorithm (n=30).
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o backward Iacatioa
+ Qatimated locations

Figure 30: Estimated pole location from the MPEM algorithm (n=30).
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locating the proper number of poles outside the unit circle. If there is too much noise, and

the order has not been overspecified to a large enough value, the MPEM method may fail.

Recall the example of the two closely spaced frequencies and the singular value spectrum

shown in Figure 14. One may chose either 4, 6, or 8 as the system order after viewing the

spectrum. Also, the noise singular values are very close in magnitude to the signal singular

values and one would expect that the effect of the noise would be great even if the proper

order was chosen. Figure 31 shows the singular value spectra of the QmT Qm matrix for

overspecification orders of 30 and 50. The spectra shown in the figure are intermediate

results from the MPEM. Table 8 shows the frequency and damping estimates from the

MPEM when the number of principal eigenvectors are chosen as 4, 6, or 8 for

overspecification orders of 30 and 50. When the overspecification order is too low

(L=30), the MPEM averages the two closely spaced modes regardless of the selection of

the number of principal eigenvectors . The numerical difference between the signal

singular values and the noise singular values is low with the low overspecification order.

When the order is higher (L=50), the selection of the number of principal eigenvectors does

have an effect upon the estimates. Notice that the numerical difference between the signal

singular values and noise singular values is higher. The closely spaced modes are averaged

as one value when four principal eigenvectors are used. The correct number of modes are

identified when 6 or 8 is chosen as the number of principal eigenvectors. Theoretically,

the number of principal eigenvectors should not be estimated too high, since the mechanism

for distinguishing the signal and extraneous poles may be lost.

Overview

The key difficulty in estimating an AR model and equivalently estimating the

frequencies and damping factors of a system is the effect of noise bias. In the examples,

the effect of overspecification upon discrete time series models, in this case the AR model,

is shown. The difficulty with the overspecified algorithms is the sorting of the noise

modes from the true modes of the model. The MPEM is able to provide the benefits of

overspecification and distinguish between the signal poles and the extraneous poles. An

accurate low-order AR model can be developed from the MPEM estimates of signal poles.

However, the goal of this report is to identify the means of constructing the whole discrete

time transfer function. One method to deal with estimation bias is to simply identify the

overspecified ARMA model in a single stage. The alternate is a two-stage procedure. l'he

first stage would use free or the impulse response and the MPEM to identify order and

produce an accurate AR model containing signal frequency components only. The second

stage would then have to identify the MA parameters given the AR model and the input-
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Figure 31: Singular Value Spectra of the backward autocorrelation matrix
for two closely spaced modes.
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Table 8: MPEM estimates for MDOF data with closely spaced modes

Trial L p mode 1 mode 2 mode 3

freg damp freg damp freg damp

# Hz % Hz % Hz %

1 30 4 14.79 1.25 * * 30.01 0.88

2 30 6 14.79 1.25 * * 30.01 0.88

3 30 8 14.80 1.54 * * 29.88 0.57

4 50 4 14.79 1.59 * * 29.61 0.54

5 50 6 14.63 0.84 14.98 0.72 30.01 0.90

6 50 8 14.63 0.84 14.98 0.72 30.01 0.91

True Values 14.60 1.00 15.00 1.00 30.00 1.00
* unable to identify
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output time history set. The next section explores the two methods using simulated and

experimental data.
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APPLICATIONS

In this section two algorithms used to parameterize a full ARMA model are

compared. The first algorithm is a single-stage, possibly overspecified, Least Squares

algorithm and will be denoted as the SLS (for single-stage least-squares) algorithm. The

other is a two stage procedure that uses free response and the MPEM to identify system

order and produce an accurate AR model containing signal frequency components only,

and an MA LS procedure to identify the MA parameters. The two-stage algorithm will be

denoted by 2LS. The 2LS algorithm will produce a lower order model without noise

modes. The SLS algorithm will provide higher order models, due to overspecifiration and

requires less information since a free response record is not needed. The 2LS algorithm

requires additional data and provides more information about the system. It identifies the

signal frequencies and dampings along with providing a reduced order model which will

allow for more rapid calculation of the system response. Simulated MDOF data and

experimental SDOF and MDOF data will be used to compare the algorithms. Since the

second stage of the 2LS algorithm has not yet been discussed, it will be presented here.

MA Parameter Identification

The ARMA model consists of two parts, the Autoregressive part and the Moving
Average part. While the Autoregressive part of the ARMA has an easily interpreted

physical meaning, the Moving Average (MA) part of the model does not. The MA part of

the ARMA model relates the input directly to the output. It is the nonhomogeneous part of

the ARMA model. A Moving Average process may be modeled as

y(k) = (b0 + bjz t + ...+ bpz p ) u(k) (78)

A Moving Average process is a weighted average of another process.

If the AR parameters for a given ARMA model are known, then the MA parameters
can then be identified in a separate set of calculations or "second stage." Any of ARMA

identification algorithms can be modified to identify the MA parameters. But, for simplicity

in this report, the MA parameters are determined by a modified form of the LS algorithm.

Given the input-output time histories and the AR parameters, the ARMA model can be

reduced to a MA form. In order to identify the MA parameters, an overdetermined set of

simultaneous equations is written in matrix form as
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um(P+l) Um(p) .. um(2 ) b, = zm(p+l) +4,e'+'1) I (79)

I IIII

um _ u(N ) um (N- 1)...tuM(N-p+l1 pb 1 zm(N) e N

or
Um b = zm + e (80)

where

zm(k) = Ym(k) - a, ym(k-i) (81)
i= 1

The LS solution of Eqn 79 is

b = (UmTUm)-1 UmT Zm (82)

Here the notation of persistent excitation is clearly demonstrated. If the scaled discrete time
input autocorrelation matrix, UmTUm, is singular, then the MA parameters can not be

determined. A persistent excitation provides full rank of the input autocorrelation matrix

(reference 16).

The second stage of the 2LS algorithm solves the set of equations through the use

of a LS algorithm. It should be noted that any of the major algorithms could be used to

estimate the MA parameters. The MA LS parameter estimates are biased, just as the full

model LS estimate is biased. Other algorithms were considered for estimation of the MA

parameters, but since the LS algorithm is the simplest of the major algorithms to

implement, it was chosen for this sample study.

A series of experiments were peifurined to illustrate the application of the proposed

two-stage approach. Simulated data for a MDOF system was used to compare the

algorithms. Also, data for a SDOF and a MDOF system were acquired experimentally
from actual structural systems and used to examine the 2LS algorithm. Results show that a

model developed using single-stage LS parameter estimates (without overspecification)

fails to predict response adequately for both the SDOF and MDOF system, while the model

dc.'pcd using the 2LS algorithm parameter estimates provides very good response

predictions. Overspecified models can be identified using the SLS algorithm that can be
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used to accurately predict response. All measured quantities cited in the following

discussion are accelerations measured in g's.

1. Simulated Data

Input and output time histories were simulated to compare the two candidate

algorithms, the 2LS and the SLS. The input was a pseudo-random binary input as shown

in Figure 32. A sixth order arbitrary ARMA model was used to generate the system output

time history for this input. The output was corrupted with gaussian random noise at a

signal-to-noise ratio of 40 dB. The corrupted response is shown in Figure 33. The SLS

algorithm was used to identify a sixth and twelfth order ARMA model. The FRF
magnitudes of the identified and exact ARMA models are shown in Figure 34. The Figure

illustrates that even a modest level of noise effects the SLS. The the first mode of the exact

transfer function is accurately modeled by the twelfth order model and second mode is

modeled but not as accurately. The sixth order model, recall the actual order of the system
is six, is not represented accurately. Notice the strange behavior in the FRF magnitude plot

of the 12th order model past 30 Hz. The extraneous modes are the cause of this behavior.
The noise used in the example has a flat spectral density over the entire frequency

range. If these data were experimentally acquired, low pass filters would have limited the

bandwidth of the signal and the bandwidth of the noise. The equivalent digital filter of a
four pole low pass Butterworth filter (reference 5) was used to simulate the effect of actual
low pass filters. The frequency response of the digital filter is shown in Figure 35. If the

input and output are filtered by similar low pass filters, the transfer function (within the
bandwidth) will be unaffected by the filters, but the filters will truncate the high frequency

noise. Figures 36 and 37 are the simulated filtered input and output produced when the

input and output time histories are modified by the digital filter (actually an ARMA model).
When the SLS algorithm is used with the filtered input-output data sets, the results are
much better. Figure 38 shows the FRF magnitude plots of the 6th and 12th order models.

8oth models follow the first two modes closely, but the third mode is not identified.

The FRF of the 2LS models identified using the filtered and unfiltered data are
shown in Figure 39. The 2LS models are 6th order and were obtained by assuming that
the AR part of the model is known precisely. The model obtained from the unfiltered data
is inaccurate. The modei obtained trom the tutered aata is accurate for the trst two modes

and third mode is identified but not very accurately. Certain characteristics of the two

algorithms are readily illustrated by the example. First, the SLS models improve as the

order is increased, and secondly, the algorithms work best when the noise is band-limited.
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If the AR portion of the model can be identified accurately, the 2LS algorithm can produce

the lowest possible order model which is as accurate as a much higher order SLS model.

The overspecified SLS models will have dynamics past the bandwidth of interest. A high

order SLS and a 2LS model can be compared on a FRF magnitude plot to compare

accuracy.

2. The SDOF experiment

A mechanical system similar to that depicted in Figure I was used to acquire input-

output time histories to test the 2LS identification procedure. The system was fabricated

using two masses which were constrained to one-dimensional movement by linear bearings

and two parallel, cylindrical rods. The masses were connected by springs. The left-hand

or base mass could be moved manually to provide input to the system; the response of the

free mass was considered the output of the system. The experiment corresponds to a

SDOF base motion problem. The system damping was provided by the bearing friction

and is nonviscous.

The 2LS procedure requires the free response for AR parameter estimation in the

first stage. Experimental data was acquired by constraining the base mass and displacing

the free mass from equilibrium. A strain-gage accelerometer was used to measure the low

frequency acceleration response. A typical free response is shown in Figure 40. This

record contains 500 data points with a sample frequency of 100 Hz, so there is a total of 5

seconds of free response data. The ordinary LS estimates for the damped natural frequency

and damping factor are 1.820 Hz and 23% for this data set. The MPEM estimates (L=10)

are 1.806 Hz and 2.0%. The frequency estimates are similar but the damping factors differ

by an order of magnitude. A log decrement procedure was used to estimate the damping

factor (between 1.5 and 1.8%), verifying that the MPEM estimate of the damping factor is

more reasonable. Other experimental free response records were acquired and repeatability

of the MPEM estimates verified. The average damped natural frequency and damping

factor from four MPEM estimates were 1.805 Hz and 2.1%. The average estimates were
used to produce the AR parameters used in the second stage. Experimental input-output

time histories were obtained by manual excitation of the base mass. The input to the

system was measured as the acceleration of the base mass by a second strain-gage
accelerometer. Figures 41 to 43 show three different inputs (500 pts, fs=100 Hz), Case A,

Case B, and Case C, respectively, which were applied to the system. The single-stage LS

(SLS) model estimates (without overspecification) obtained from the three input-output

time histories were inconsistent, and the resulting ARMA models provided inaccurate
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predictions of system response. The predicted responses are obtained through the use of

the estimated ARMA models and the input time histories without knowledge of the actual
output time histories. Figure 44 shows the predicted response (in comparison to the actual
response) to the input Case B using the SLS model obtained from input-output time
histories for Case A. The predicted response is typical of the cases considered with
models developed using the SLS estimates. Figures 45 to 47 show the predicted responses
(in comparison to the actual responses) to input Cases A, B, and C, respectively, from the
2LS model obtained from the input-output time histories for Case A. The 2LS model

obtained using the input-output time history corresponding to input Cases B and C provide
similar predicted responses. The magnitude frequency response plots for the three 2LS
ARMA models are shown in Figure 48 while the frequency response plots for the three
SLS ARMA models are shown in Figure 49. The SLS ARMA models have grossly

overestimated the damping. The 2LS ARMA models are very similar to each other when
compared using the FRF, and appear to be more reasonable than the SLS models.

Overspecification of the model in the SLS procedure improves the damping
estimates but introduces extraneous poles and zeroes as shown in Figure 50. The damping

and frequency estimates are given in Table 9 as the model order is increased in the SLS
procedure. The damped natural frequency is about 4 percent of the nyquist frequency, and

one would expect high errors in the damping factor estimates. The response prediction of
input Case B using the tenth order SLS ARMA model obtained from input Case A is

shown in Figure 51. Note that the damping estimate is still too high and there is some error
in frequency.

3. The MDOF Experiment

A cantilevered thin steel beam (length=37.25", width=l.5", thickness= 0.0625")
was used as a MDOF experimental system. The beam was cantilevered on a block, the
block was fixed, and the beam was initially deformed to provide free vibration. A strain-
gage accelerometer was mounted on the tip of the beam to measure free response. The
analog data was filtered (with cutoff frequencies of 16, 31.5, and 63 Hz) using an analog
four-pole low-pass Butterworth filter and then digitized. The MPEM algorithm was used
to identify the natural frequencies and damping factors from the free vibration response.
The results appear in Table 10 along with the analytical frequency values computed for a
cantilevered beam. Note that the fourth mode was identified in Trial 5 as an extraneous
mode. In this case, the noise perturbed the pole locations (corresponding to the fourth
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Table 9: Frequency and damping estimates

from single stage LS estimates of Case A

Order Freq

(Hz) (%)

2 1.600 13.2

4 1.800 5.6
6 1.798 3.9

8 1.798 3.8

10 1.793 3.1

12 1.794 3.1
20 1.788 2.8
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Table 10: MPEM estimates for MDOF exp. data

Trial L mode l mode 2 mode 3 mode 4

freg damp freg damp freg damp freq damp

# Hz % Hz % Hz % Hz %

1 30 1.516 .500 8.801 .223 (filtered) (filtered)

2 30 1.518 .594 8.801 .229 (filtered) (filtered)

3 40 1.512 .322 8.804 .205 24.66 .168 (filtered)

4 40 1.512 .454 8.800 .271 24.64 .181 (filtered)

5 50 1.517 .686 8.793 .307 24.57 .201 (unidentified)

6 50 1.518 .463 8.800 .274 24.55 .330 48.29 .034

AVG 1.515 .503 8.800 .251 24.60 .220 48.29 .034

Analytical
1.45 9.10 25.49 49.95
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mode) inside the unit circle, indicating that more trials are necessary. The average of the

identified values were then used in the second stage of the 2LS procedure.
The base block that the beam was cantilevered from was attached to a shaker to

provide controllable system input. The input was measured as the acceleration response of

the base block using a strain gage accelerometer and the system response was measured as

the beam tip acceleration. The voltage sent to the shaker was a random binary voltage

generated by computer. The voltage was randomly either +IV or -IV for a discrete time.
Two sets of filtered input accelerations to this system are shown in Figures 52 and 53

(Case D and Case E, 500pts, fs=250 Hz). Most of the input energy was contained
between the frequencies of approximately 5 and 35 Hz. The shaker was unable to provide

input at frequencies as low as the first mode, and therefore the first mode was not excited.

The MA parameters for this system were estimated from the data assuming either two or

three significant modes.
The frequency response plots of SLS ARMA models of order 4, 6, 8, and 10

obtained using data from input Case D are shown in Figure 54. As the overspecification is
increased, the peaks are better defined. 2LS models of order four and six were also

obtained from input Case D using the frequency and damping estimates of just the second

and third mode for the fourth order model and the estimates of the second, third and fourth

modes for the sixth order model to determine the AR parameters. The frequency response
plots for these two cases are shown in Figure 55. The frequency response plot shows that

the sixth order model is approximately equivalent to the fourth order model in the frequency
range of interest. The response predictions from input Case E using the sixth and tenth

order SLS models are shown in Figures 56 and 57 in comparison with the actual system
response. The sixth order model does not predict response as well as the overspecified

model. The fourth order 2LS model predicts the response as well as the overspecified SLS

model as shown in Figure 58, and the prediction can be developed in approximately 40%

of the time required for the tenth order overspecified model.

Overview
The comparison of results from the numerical simulations show the improved

transient response predictions from using models developed with the 2LS method. The
results from experimental systems are quite good even though the experimental system is
nonviscously damped, and the ARMA model is better suited for a viscously damped

system. The MPEM was successful in identifying the frequency and damping factors of
the first four modes for the cantilever beam. The MPEM did fail to provide estimates of the

fourth mode of the experimental MDOF system in Trial 5. In this case, the measured free

111



4J 00
CL

0 12

ti mQ (Sec)

Figure 52: Acce1,~ration input to the MDOF system, input Case D.

112



07
%. 0.

.

time (6s2c)

Figure 53: Acceleration input to the MDOF system, input Case E.

113



40 4th order
--. 6th or-der

--6th order
20 $A ___0th order

0
qi

4J

C-20

-40

-60 I
0 25 50 75 100 125

Frqcuency (Hz)

Figure 54: Magnitude frequency response plots
of SLS models (input Case D).

114



40
4th order

2 ._6th order

20

c 2

0

-60

025 50 75 100 125

Frequency (Hz)

Figure 55: Magnitude frequency response plots
of 21-S models (input Case D).

115



Masured
-. PrdictQd

2

a.

o 1

time (zac)

Figure 56: Sixth order SLS model used to predict response
of the MDOF system to input Case E.

116



-. MQasured
--. Predi ctad

2

LI
C
0

tom 2sc

Figure 57: Tenth order SLS model used to predict response
of the MDOF system to input Case E.

117



3
___Measured

_.Predicted

2

LO0

-2

timei (sec)

Figure 58: Fourth order 2LS model used to predict response
of the MDOF system to Case E.

118



response contained too much noise. The MPEM sensitivity toward noise can be

diminished by further overspecification of the model but that was not attempted in this

study. An overspecified ordinary LS estimate of the AR parameters could have been used
to identify the frequencies and dampings, but it would have been difficult to distinguish the

signal roots from the extraneous roots.

The deficiencies of an ordinary single-stage identification scheme arise from bias

problems in the estimation of the AR parameters of the ARMA model. The advantage of the

two-stage procedure is in the determination the AR parameters separately from the MA

parameters allowing greater accuracy in the estimation. The 2LS method reduces the bias
in the AR parameters before the second stage and allows for the identification of a reduced

order ARMA model. The disadvantage of the 2LS method is that it requires an additional

set of data, a free response record. An alternative is to form the impulse response function

using time domain data, but this usually requires an ensemble average of multiple tests.

Ideally, the single-stage algorithm can be used with overspecified systems and the

extraneous poles and roots can be eliminated providing a small order accurate model. The

difficulty is in the automatic sorting of the extraneous poles and roots from the signal pole

and roots.
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NONLINEAR MODELS

Discrete time series can be used for transient response prediction of linear

structures. Free vibration can be modeled by a special form called an Autoregressive (AR)

model. When structural nonlinearities are present, it may be possible to modify the form of

the AR model to incorporate the nonlinearities. One possibility is to allow the model

parameters to become functions of state. This report explores the proper form of the

parameter functions for various nonlinear structures. Two numerical case studies and

experimental results are used to evaluate the model form. This section presents the results

of a preliminary study intended to investigate the suitability of modeling nonlinear structural

systems with Discrete Time Series models.

The Nonlinear AR Model

Free vibration for linear structures can be modeled as an Autoregressive process.

The Autoregressive (AR) models can be used to extract modal parameters such as damping

factors and natural frequencies. The AR models can be parameterized from measured free

vibration using the identification algorithm presented in the previous sections. The models

can then be used, if initial conditions are known, to predict vibration. The standard AR

model for a single output system is

x(k) = -al x(k- 1) - a2x(k-2) -...- apx(k-p) + e,(k) (83)

where x(k) is the system's free response at discrete time k, the a's are the parameters of the

model, e(k) is the residual or error, and p is the system order. For multiple output

systems, x becomes a vector of responses and the parameters become matrices. The AR

model can be put into the form
[I + aiz1 + a2z 2+...+az-pl x(k) =e(k) (84)

using the definition of the forward shift operator, z. The AR model used to predict the free

response of a linear system can be modified in an attempt to incorporate certain types of

system nonlinearities. In this report the constant coefficients of the AR model become
functions of state in order to form the nonlinear Autoregressive (NLAR) models. The

general NLAR model is

-1 -

[1+ al(x) z + ..+ a p(X) z-p ] x(k) =e(k) (85)
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where the x vector represents the state

x = [x(k-1),x(k-2),...,x(k-p)] (8()

The NLAR model is an approximation. The accuracy of the NLAR model depends upon

the magnitude of nonlinearity, the form of individual AR functionals, the accuracy in the
parameterization of the functionals, and the initial conditions. The form of the NLAR
model has to be determined before the predictive model is parameterized. Single-degree-of-
freedom (SDOF) nonlinear oscillators were studied to gain insight into model forms. The

general NLAR model for a nonlinear SDOF oscillator is

-1 -
[1+ aI(x) z + a 2 (x) z -2 x(k) = E(k) (87)

The studies focused upon the form of the functionals a1 and a2 .

Two case different systems were studied using simulated time series data. These
systems were a Duffing Oscillator and a viscous-coulomb damped oscillator. Noiseless

position time history data were generated numerically by integrating the equations of
motions via the fourth order Runge-Kutta algorithm.

System response data for a complex nonlinear mechanical system was also acquired
experimentally. A Piper Apache oleo-pneumatic landing gear strut was used. Experimental
position data were acquired using the oleo-pneumatic strut test facility shown in Figure 59.
Regardless of its source, the position data were used to estimate the parameters of the
proposed models in a least squares (LS) fashion. The first two points from the position

data were then used along with the models to generated predicted response. The position
data and the predicted response were compared to qualitatively compare the models. The
investigations were focused upon the evaluation of the model form and not necessarily
upon the identification algorithms or the influence of noise. For these reasons the
simulation data were not corrupted with noise, but noise in the experimental data was

unavoidable.

I.The Duffing Oscillator

The Duffing Oscillator represents an SDOF system where the stiffness is nonlinear

and the damping is viscous. The equation of motion for a Duffing Oscillator is
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k+c X*+ a x+ 3 = 0 (88)

If 0 is positive, the oscillator becomes more stiff as the displacement, x, increases and the

oscillator is said to have a hard spring. If 3 is negative, the oscillator becomes less stiff as

the displacement increases, and the oscillator is said to have a soft spring. Only the results

using hard springs will be presented in this report. NLAR models for the Duffing oscillator

have been cited in the literature in the past, Reference 24 suggests that the NLAR model

x(k) + (bi+ci exp( -x2(k-1))) x(k-1) + a2 x(k-2) = E(k) (89)

could be used to approximate the Duffing Oscillator. This model will be referred to as the

exponential model, since reference 24 has incorporated the stiffness nonlinearity of the
Duffing oscillator into an exponential functional for al. Usually differential equations can

be approximated through finite differencing procedures. Here, central differencing of Eqn

88 is used to suggest an alternate and somewhat simpler nonlinear form,

x(k)+ ( b1 + cI x2(k-1)) x(k-1) + a2(k-2) = e(k) (90)

This NLAR model will be referred to as the parabolic model, since ai has a parabolic

functional form. Also, the linear AR model, where the parameter are constants, can also be
used to approximate the Duffing Oscillator and the influence of the nonlinearity

investigated.
The numerical simulations used the following form of the hard spring Duffing

Oscillator
3+ 0.25 x + 14.8 x +34.02 x =0 (91)

which is also the oscillator used by reference 24. The initial conditions and time increment

used in the numerical integration were

x(0) =1. x (0) =0. At =0.01 sec (92)

The three models, the exponential NLAR model, the parabolic NLAR model, and the AR

model, were estimated from 500 points of data. The linear model, identified by the
Modified Principal Eigenvectors Method, the exponential model, identified by a LS

algorithm, and the parabolic model, identified by a LS algorithm, are all given in Table 11.
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Table 11: Models used for Duffing Oscillator

Trial AR Model Exponential Model Parabolic Model
al a2 al bl a2 al bl a2

1 -1.9946 0.9978 -1.9910 -0.00545 0.9975 -1.9960 0.00339 0.9975
2 * * -1.9862 -0.0153 0.9975 -1.9960 0.00338 0.9975

* not considered
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Figure 60 shows the predictions of the three models (using the first two simulated data

points as initial conditions) in comparison to the simulated data. Both NLAR models

perform bettei than thv. liniear model. The differences between the models and the analytical

Duffing Oscillator can be examined by plotting the damped natural frequency versus

displacement x, as shown in Figure 61. The percent of critical damping as a function of

displacement can also be examined, but is not included in this report. The natural
frequency of the Duffing Oscillator is ((X + 13x2)1/2. The natural frequency of the NLAR

models are determined by linearizing the models with x(k-1) equal to x. Figure 61 shows

that the exponential model is a good approximation for .2< I x I < 1, while the parabolic
model is good for much higher amplitudes.

Simulated data were used to test if the performance of the NLAR models degrade as

the amplitude is increased (essentially, increasing the nonlinearity). The equation of motion

was integrated again with the initial position value doubled. The models were then used

with the new initial conditions to predict the response. Figure 62 shows the response

predictions of the NLAR models in comparison to simulated data. The exponential model

fails to predict the nonlinear response. The parabolic model's response prediction is good

within the resolution of the plot. The results suggest that the exponential model does not

approximate the amplitude dependence of the Duffing Oscillator as well as the parabolic
model. This can be confirmed by estimating the parameters of the models using the new

simulated Duffing Oscillator data. The form of an NLAR model should remove the

amplitude dependence of the parameters. The NLAR models estimated from the new data

are also given in Table 11. The exponential model's parameters change while the parabolic

model isinvariant to the change in initial conditions.

2. Viscous-Coulomb Damped Oscillator

The numerical studies also included a viscous-coulomb damped oscillator. The

equation of motion for the viscous-coulomb damped oscillator is

k+ 2Cox + 4 2x + c dsign(x) =0 (93)

where cd is the coulomb damping coefficient. No NLAR model for this system was found

in the literature. Finite differencing of Eqn 93 suggests an NLAR model of the form
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x(k) + a, x(k-1) + a2x(k-2) +b, sign tx(k-1) - x(k-2)] = E(k) (94)

The linear AR model may also be used if the coulomb damping term is insignificant. The

viscous-coulomb damped oscillator used in the simulation was

+ 0.5 x + 25 x + 0.5 sign(x) --0 (95)

The initial conditions and time increment used in the numerical integration were the same as

Eqn 92. The linear model, identified by the MPEM, and the NLAR model identified by a

LS algorithm are given in Table 12. Figure 63 shows the predictions of the two models in

comparison to the simulated data. Both predictions are very good with the NLAR model

prediction following the simulated data more closely. The effectiveness of the linear model

in the vibration prediction shows the nonlinearity of Eqn 93 may not be great enough to

warrant an NLAR model for this particular set of parameters.

3.A Landing Gear

Nonlinear data from a Piper Apache landing gear strut (see reference 25) was used
to evaluate the NLAR models. The experimental data (500 pts, fs=200 Hz) appear in

Figure 64. Notice the constant value of the data past about 1.5 second. The landing gear

sticks at a new equilibrium after every oscillation due to the strong effect of the bearing
friction in the gear. This bearing friction can be modeled as coulomb damping. The NLAR

used to model the vibration was of the form

x(k) + al x(k-1) + a2x(k-2) + blsign Ix(k-1) - x(k-2)I+b 2 = E(k) (96)

which is the same as the viscous-coulomb damped NLAR model plus a constant term to

represent the nonzero equilibrium position. An AR model has no mechanism to simulate

coulomb sticking, so only the NLAR model was identified by a LS algorithm. The NLAR
model identified at the 200 Hz sample rate is not accurate, possibly due to noise bias.

However, when the data is decimated by using only every fifth data point (reducing the

sample rate to 40 Hz), the effect of the noise bias is not as great. The resulting NLAR

model is given in Table 12, and the response prediction of the NLAR model is shown in

Figure 64. The NLAR prediction is more accurate than the predictions of the oscillation

given by reference 25 and exhibits the sticking phenomenon associated with coulomb

damping.
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Table 12: Models used for Viscous-Coulomb Damped Oscillator

al a2 bl b

Simulaion
AR model -1.9904 0.9929

NLAR model -1.9924 0.9949 4.77E-5

Excmnal
Strut -1.9156 0.9512 0.00175 -0.08677
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Figure 63: Viscous-coulomb damped oscillator response
and predictions from NLAR and AR models.
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Finite differencing techniques were used to suggest forms for nonlinear

autoregressive models. The NLAR models when parameterized by LS techniques using
noiseless simulated data provided excellent prediction. Linear AR models provided

response predictions nearly as good as the NLAR models when the degree of the

nonlinearity was not great. The exponential NLAR model is accurate when the degree of
nonlinearity of the Duffing Oscillator is small. But, the parabolic model is a better model

for the Duffing Oscillator particularly for large amplitude response. Experimental data from
an oleo-pneumatic strut was also used to evaluate NLAR models. The prediction of the

experimental response by the NLAR was very reasonable and is better than the predictions

by the nonlinear differential equations parameterized by reference 25.
The use of time domain discrete models in the form of Autoregressive Moving

Average (ARMA) models has been shown to be advantageous in the response prediction of

forced linear vibration. When the structure is nonlinear, the ARMA models may have to be
extended to model the nonlinearities just as the AR models are extended to NLAR models.

The new nonlinear ARMA model's parameters will be functions of state. This is a topic

requiring further research.
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CONCLUSIONS AND RECOMMENDATIONS

Discrete time series models for both linear and nonlinear systems have been shown

to be an effective and accurate means of representation and prediction. Linear models are

effective when the order is large enough and the sample rate is at least an order of

magnitude higher than the upper bandwidth limit. The time series models become more

accurate as the sample rate increases, but the effect of noise perturbations on the parameters

also become greater as the sample rate increases. Some trade-off must be made when

selecting a sample rate for acquiring data to be used in parameter identification. The sample

rate must be high enough to insure accurate predictions once the model is parameterized.

But the sample rate must be low enough, so that the model can be parameterized in the

presence of noise.

There are various techniques to reduce the effect of noise bias ranging from iterative

techniques to overspecification techniques. The iterative techniques often experience

convergence problems when an interim model is identified as unstable. The

overspecification techniques are easier to implement but result in excessively large model

order. The model must be reduced to the proper order by some technique if it is to be

effective in response prediction or control. Time domain modal methods compare mode

shapes using modal confidence factors and are able to eliminate the noise model from the

system model in the identified model. The difficulties with modal methods are they require

multiple measurement locations, are time consuming, and are not well suited for automated

data processing. Ideally, one would like to measure a limited number of inputs and outputs

to parameterize the model. When a SISO ARMA model is desired, only the single input

and the single output time histories should be needed to characterized the model. The

traditional signal processing techniques utilize single input and single output time histories

but provide no means of separating noise from signal modes in the identified model. One

has to use the entire model, with noise and signal fractions, to predict vibration as was

done with the overspecified SLS models. The 2LS algorithm allows the AR part of the

model to be reduced to its proper size through the use of the MPEM. A non-overspecified

LS estimation of the MA parameters completes the algorithm. The MPEM was shown to

be a highly accurate and automatic method for determining system order. The MPEM

identifies natural frequencies and eliminates noise bias from free response records even in

the case of closely spaced modes. The main drawback of the 2LS algorithm is that it

requires the additional free response record. The frequency and damping error envelopes

demonstrate the high accuracy required when identifying the autoregressive part of the

model.
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Experimental data from a SDOF and a MDOF was obtained, and ARMA models

were successfully identified using the SLS and the 2LS algorithms. The 2LS models, with

orders of the proper size, successfully predicted forced dynamic response. The SLS

models had to be much larger, greatly overspecified, to be as accurate as the 2LS models.

The FRF plots graphically show how the SLS models begin to follow the first few modes

of vibration and how all modes are accurately represented when the order is overspecified

to large values. The FRFs also show the dynamics of the noise modes beyond the

bandwidth limit. There are also noise modes in the bandwidth, but their effects cannot be

uncovered because their amplitudes are small when compared to the signal modes. There

does not seem to be any ill-effects of carrying the noise modes in the model when it is used

for vibration prediction, other than the additional computational time required. But, it is
conceivable that there are some contributions in the predicted response from these noise

modes. The 2LS models have no noise modes and may be used effectively for response

prediction purposes, and also for control algorithm purposes where pole and zero

cancellations are required.

The optimum algorithm would require only the single input single output time

histories and would overspecify the model and eliminate the extraneous noise modes. A

two-stage algorithm would first have to identify the AR model from an overspecified

ARMA model and then identify the MA parameters in a LS fashion without requiring the

addition set of free response data. The other drawback of the 2LS method, as it is

proposed, is that the MA part of the model is not overspecified. There is some noise in the
input and overspecification would allow the MA parameters to be better identified. But,

there is no way of identifying which part of the MA model is extraneous without the use of

the AR parameters. The best method would identify an overspecified ARMA model and

split it into a modal form using partial fraction expansion, and identify the true modes of the

system using some criteria. The problem is what type of criteria to use.

Real nonlinear free response was used to evaluate the NLAR models. The NLAR

model predicts the free vibration of an oleo-pneumatic strut fairly well. However, an

accurate model requires the careful selection of the data sampling rate and the determination

of the influence of measurement noise on the parameters. This has not been considered in
this investigation. The algorithm that identified the NLAR models was a non-overspecified

LS algorithm which produces biased parameter estimates. The bias at the lower sample rate
had a smaller effect than the bias at the high sample rate. No algorithms were investigated

to reduce the bias. Given further research in the area, the NLAR models could become

easier to parameterize and more attractive to use.

135



REFERENCES

1. Leuridan J.M., Brown D.L., and Allemang R.J., "Time Domain Parameter
Identification Methods for Linear Modal Analysis: A Unifying Approach," Journal of
Vibration, Acoustics, Stress, and Reliability in Design, Vol. 108, pp. 1-8, Jan. 1986.

2. Pappa R.S. and Ibrahim S.R., "A Parametric Study of the Ibrahim Time Domain
Modal Identification Algorithm," The Shock and Vibration Bulletin, Vol. 51, No. 3,
1981, pp.4 3 -5 1.

3. Franklin G.F., and Powell J.D., Digital Control of Dynamic Systems, Addision-
Wesley Publishing Co., Reading Mass, 1980.

4. Astrom K.J. and Wittenmark B., Computer Controlled Systems, Prentice-Hall,
Englewood Cliffs, N.J., 1984.

5. Stanley, W.D., Digital Signal Processing, Reston, Va., Reston Publishing Co., Inc.,

1975.

6. Bellanger M., Digital Processing of Signals, John Wiley and Sons, N.Y. 1984.

7. James, P. N., Souter, P., and Dixon, D. C., "A Comparison of Parameter
Estimation Algorithms for Discrete Systems," Chemical Engineering Science, Vol.
29, pp. 539-547, 1974.

8. Hale A. L., and Bergman L.A., "The Dynamic Synthesis of General Non-
Conservative Structures from Separately Identified Substructure Models," Journal of
Sound and Vibration, Vol 98., pp. 431-446, 1985.

9. Mignolet, M. P., and Spanos, P. D., "ARMA Monte Carlo Simulation in
Probabilistic Structural Analysis," AIAA Paper No. 87-0932, Proceedings of the
28th AIAA/ASME/ASCE/AHS Structures, Structur'a Dynamics and Materials
Conference, 1987.

10. Spanos, P. D., and Mignolet, M. P., "Z-Transform Modeling of P-M Wave
Spectrum," Journal of Engineering Mechanics, Vol. 112, No. 8, August, 1986.

11. Gersch W., and Foutch D.A., "Least Squares Estimates of Structural System
Parameters Using Covariance Function Data," IEEE Trans. on Control, Vol. AC-
19., No. 6.,1974, pp. 898-903.

12. Press W.H., Flannery B. P., Teukolsky S.A., and Vetterling W.T., Numerical
Recipes. Cambridge Mass, 1986.

13. Kay S.M., and Marple S.L.,"Spectrum Analysis-A Modern Perspective," IEEE
Proceedings, Vol. 69, No. 11, 1981, pp. 1380-1419.

14. Gray R.M. and Davisson L.D., Random Processes. A Mathematical Approach for
Engineers, Prentice [fail, 1986.

15. Shinozuka M.,Yun C., and Imai H.,"Identification of Linear Structural Dynamic
Systems," Journal of the Engineering Mechanics Division, ASCE, Vol. 108, EM 6,
pp. 1371-1390, 1982.

136



16. Astrom K.J., and Eykhoff P.,"System Identification-A Survey," Automatica, Vol. 7,
pp. 123-162, 1971.

17. Hsia T.C., "On Least Squares Algorithms for System Parameter Identification,"
IEEE Transactions on Automatic Control, pp. 104-108, Feb. 1976.

18. Finnegan B.M., and Rowe I.H., "Strongly Consistent Parameter Estimation by the
Introduction of Strong Instrumental Variables," IEEE Trans. Automatic Control, vol
AC-19, pp. 825-30, 1974.

19. Astrom K.J. and Bohlin T., "Numerical Identification of Linear Dynamic Systems
from Normal Operating Records," Theory of Self-Adaptive Control Systems. (Ed.-
Hammond), Plenum Press, 1966.

20. Sinha N.K. and Kuszta B., Modelin& and Idenjification of Dynamic Systems, Van
Nostrand Reinhold Co., N.Y., 1983.

21. Cooper J. E., "Comparison of Some Time Domain System Identification Techniques
using approximation Data Correlations," Proceedings of IMAC-IV, 1986.

22. Kumaresan R., and Tufts D.W.,"Estimating the Parameters of Exponentially Damped
Sinusoids and Pole-Zero Modeling in Noise," IEEE Trans. on Acoustics., Vol.
ASSP 30, No.6, 1982, pp.833-840.

23. Batill S.M, and Hollkamp J.J.,"Parameter Identification of Discrete Time Models for
Structural Response Prediction," Submitted to the AIAA Journal, 1988.

24. Ozaki T., "Non-Linear Threshold Autoregressive Models for Non-Linear Random
Vibrations," J. of Applied Probability, Vol. 18, 1981, pp. 443-451.

25. Batill S.M, and Baccaro J. M., "Modeling and Identification of Nonlinear Dynamic
Systems with Application to Aircraft Landing Gear," Proceedings of the 29th
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference,
pp.871-884, 1988.

26. Golub G.H., and Van Loan C.F., Matrix Computations, John Hopkins University
Press, Baltimore Md., 1983.

27. Goodwin G.C. and Payne R.L., Dynamic System Identification: Experiment Design
and Data Analysis. Academic Press, New York, 1977.

28. Brandon J.A., "On the Robustness of Algorithms for the Computation of the Pseudo
Inverse for Modal Analysis," Proceedings of the 6th IMAC, 1988.

29. Void H. and Rocklin G.T., "The Numerical Implementation of a Mult-Modal
Estimation Method for Mini-Computers," Proceedings of the 1st International Modal
Analysis Conference, pp. 542-548, 1982.

137



BIBLIOGRAPHY

Identification Survey Papers and Books

1. Astrom K.J., and Eykhoff P.,"System Identification-A Survey," Automatica, Vol. 7,
pp. 123-162, 1971.

2. James, P. N., Souter, P., and Dixon, D. C., "A Comparison of Parameter
Estimation Algorithms for Discrete Systems," Chemical Engineering Science, Vol.
29, pp. 539-547, 1974.

3. Goodwin G.C. and Payne R.L., Dynamic System Identification: Experiment Design
and Data Analysis. Academic Press, New York, 1977.

4. Kay S.M., and Marple S.L.,"Spectrum Analysis-A Modem Perspective," IEEE
Proceedings, Vol. 69, No. 11, 1981, pp. 1380-1419.

5. Shinozuka M.,Yun C., and Imai H.,"Identification of Linear Structural Dynamic
Systems," Journal of the Engineering Mechanics Division, ASCE, Vol. 108, EM 6,
pp. 1371-1390, 1982.

6. Sinha N.K. and Kuszta B., Modeling and Identification of Dynamic Systems, Van
Nostrand Reinhold Co., N.Y., 1983.

7. Cooper J.E. and Wright J.R., "Comparison of Some Time Domain Methods for
Structural System Identification," Presented at the 2nd International Symposium on
Aeroelasticity and Structural Dynamics, Aachen W. Germany, 1985.

8. Cooper J. E., "Comparison of Some Time Domain System Identification Techniques
using approximation Data Correlations," Proceedings of IMAC-IV, 1986.

9. Mohanty N., Random Signal Estimation and Identification, Van Nostrand Reinhold
Co., N.Y., 1986.

10. Braun S. and Ram Y., "Time and Frequency Identification Methods in Over-
Determined Systems," Mechanical Systems and Signal Processing, Vol. 1, pp.245-
257, 1987.

Maximum Likelihood Method

I. Astrom K.J. and Bohlin T., "Numerical Identification of Linear Dynamic Systems
from Normal Operating Records," Theory of Self-Adaptive Control Systems, (Ed.-
Hammond), Plenum Press, 1966.

2. Astrom K.J., "Maximum Likelihood and Prediction Error Methods," Automatica,
Vol. 16, pp. 551-574, 1980.

Generalized Least Squares

1. Soderstrom, T., "Convergence Properties of the Generalized Least Squares
Identification Method", Automatica, Vol. 10, pp. 617-626, Pergamon Press, 1974.

2. Hsia T.C., "On Least Squares Algorithms for System Parameter Identification,"
IEEE Transactions on Automatic Control, pp. 104-108, Feb. 1976.

138



Instrumental Variables Method

1. Wong, K. Y. and Polak, E., "Identification of Linear Discrete Time Systems Using
the Instrumental Variable Method," IEEE Transactions on Automatic Control. Vol.
AC-12, No. 6, pp. 707-718, December 1967.

2. Young, P. C., "An Instrumental Variable Method for Real-time Identification of a
Noisy Process," Automatica, Vol. 6, pp. 271-287, Pergamon Press, 1970.

3. Finnegan B.M., and Rowe I.H., "Strongly Consistent Parameter Estimation by the
Introduction of Strong Instrumental Variables," IEEE Trans. Automatic Control, vol
AC-19, pp. 825-30, 1974.

Ibrahim's Time Domain Method

I. Ibrahim S.R. and Mikulcik E.C., "A Time Domain Modal Vibration Test Technique,"
The Shock and Vibration Bulletin, Vol. 43, No. 4, pp. 21-37, 1973.

2. Ibrahim S.R. and Mikulcik E.C., "The Experimental Determination of Vibration
Parameters from Time Responses," The Shock and Vibration Bulletin, Vol 46,
pp.187-196, Aug. 1976.

3. Ibrahim S.R. and Mikulcik E.C., "A Method for the Direct Identification of
Vibration Parameters from the Free Response," The Shock and Vibration Bulletin,
Vol 47., No. 4, pp.183-198, 1977.

4. Ibrahim S.R., "Random Decrement Technique for Modal Identification of
Structures," J.Spacecraft, Vol. 14, No. 11, pp. 696-700., 1977.

5. Ibrahim S.R., "Modal Confidence Factor in Vibration Testing," J. Spacecraft, Vol.
15, No. 5, pp 313-316, 1978.

6. Pappa R.S. and Ibrahim S.R., "A Parametric Study of the Ibrahim Time Domain
Modal Identification Algorithm," The Shock and Vibration Bulletin, Vol. 51, No. 3,
1981, pp.4 3 -5 1.

7. Smith W.R., "Least-Squares Time-Domain Method for Simultaneous Identification
of Vibration Parameters form Multiple Free-Response Records," AIAA conference
paper 81-0530.

8. Andrew L.V., "An Automated Application of Ibrahim's Time Domain Method to
response of the Space Shuttle," AIAA conference paper 81-0526.

9. Ibrahim S.R. and Pappa R.S., "Large Modal Survey Testing using the Ibrahim Time
Domain Identification Technique," J. Spacecraft, Vol. 19, No.5, pp. 459-465,
1982.

10. Ibrahim S.R., "Dynamic Modeling of Structures from Measured Complex Modes,"
AIAA Journal, pp. 446-451, June 1983.

11. Ibrahim S.R., "Computation of Normal Modes from Identified Complex Modes,"
AIAA Journal, Vol. 21, No. 3, pp. 446-451, 1983.

139



12. Ibrahim S.R., "Time-Domain Quasilinear Identification of Non-linear Dynamic
Systems," AIAA Journal, Vol. 22, pp. 817-823, June 1984.

13. Brandon J.A., "On the Theoretical Justification of Ibrahim's Method," AIAA
Journal, Vol. 23, No. 5, pp. 815-816,1985.

14. Ibrahim S.R., "Double Least Squares Approach of Use in Structural Modal
Identification," AIAA Journal, Vol 24., March 1986.

15. Ibrahim S.R., "An Approach for Reducing Computational Requirements in Modal
Identification," AIAA Journal, pp 1725-1727, Oct. 1986.

16. Hollkamp J.J. and Batill S.M., "Noise Bias in Various Formulation of Ibrahim's
Time Domain Technique," AIAA Journal, To be published

The Complex Exponential Method

1. Keller C., "Determination of complex characteristic values and vectors from
sinusoidal excitations at near resonance frequencies," AFWAL-TR-80-3136, U.S.
Air Force, June 1981.

2. Mergeay M., "Least Square Complex Exponential Method and Global System
Parameter Estimation used by Modal Analysis," Proceedings of the 8th International
Seminar on Modal Analysis, 1983.

The Eigensystem Realization Algorithm

1. Juang J.N. and Pappa,R.S. , "An Eigensysten Realization Algorithm for Modal
Parameter Identification and Model Reduction," J. of Guidance, Control and
Dynamics, Vol. 8, 1985, pp.6 2 0 -6 2 7 .

2. Pappa R.S. and Juang J.N., "Galileo Spacecraft Modal Identification using an
Eigensystem Realization Algorithm," Journal of Astronautical Sciences, Vol. 33,
No.1, pp.15-33, 1985.

3. Horta L.G. and Juang J.N., "Identifying Approximate Linear Models for Simple
Nonlinear Systems," Proceedings of the 26th AIAA/ASME/ASCE/AHS Structures,
Structural Dynamics and Materials Conference, pp.282-289, 1985.

4. Juang J.N. and Pappa R.S. , "Effects of Noise on Modal Parameter Identified by the
Eigensysten Realization Algorithm," J. of Guidance, Control and Dynamics, Vol. 9,
1986, pp.294-303.

ARMA models

I. Venkatesan, C., and Krishnan, V., "Stochastic Modeling of an Aircraft Traversing a
Runway Using Time Series Analysis," AIAA Paper No. 81-4047, Journal of
Aircraft, Vol. 8, No. 2, pp. 115-120, February 1981.

2. Hale A. L., and Bergman L.A., "The Dynamic Synthesis of General Non-
Conservative Structures from Separately Identified Substructure Models," Journal of
Sound and Vibration, Vol 98., pp. 431-446, 1985.

140



3. Lee, D. T. L., "System Order Determination of ARMA Models Using Ladder
EsLimation Algorithms," The Journal of the Astronautical Sciences, Vol. 33, No. 1,
January-March 1985, pp. 49-61.

4. Green, M. and Moore, J. B., "Persistence of excitation in linear systems," Systems
Control Letters , Vol. 7, pp. 351-360, 1986.

5. Taylor, I. F. "Identification of finite-order models of distributed systems," lEE
Proceedings, Vol. 133, pt. D, No. 6, pp. 276-278, November 1986.

6. Batill S.M, and Holkamp J.J.,"Parameter Identification of Discrete Time Models for
Structural Response Prediction," Submitted to the AIAA Journal, 1988.

7. Batill S.M, and Hollkamp J.J.,"Parameter Identification of Discrete Time Models for
Transient Response Prediction," Proceedings of the 29th AIAA/ASME/ASCE/AHS
Structures, Structural Dynamics and Materials Conference, pp. 158-166, 1988.

AR models

1. Gersch, W. "Estimation of the Autoregressive parameters of a Mixed Autoregressive
Moving-Average Time Series," IEEE Transactions on Automatic Control, pp.583-
588, October 1970.

2. Gersch W., Nielson N.N., and Akaike H., "Maximum Likelihood Estimation of
Structural Parameters from Vibration Data," Journal of Sound and Vibration, Vol.
31, No. 3.,1973, pp.295-308.

3. Gersch W., and Foutch D.A., "Least Squares Estimates of Structural System
Parameters Using Covariance Function Data," IEEE Trans. on Control, Vol. AC-
19., No. 6.,1974, pp. 898-903.

4. Gersch, W., "On the Achievable Accuracy of Structural System parameter
Estimates," Journal of Sound and Vibration, 34(1), pp. 63-79, 1974.

5. Wiberg, D. M., "Frequencies of Vibration Estimated by Lattices," Journal of
Astronautical Sciences, Vol. 33, No. 1, Jan.-March 1985.

6. Stocia P., Friedlander B., and Soderstrom T., "Least-squares, Yule-Walker, and
overdetermined Yule-Walker Estimation of AR parameters: A Monte Carlo analysis of
Finite-sample Properties," Int. J. Control, Vol. 43, No.1, pp. 13-27, 1986.

Nonlinear Vibrations

1. Maruqardt, D.W., "An Algorithm for Least Squares Estimation of Nonlinear
Parameters," Jour. Soc. Ind. Appl. Math., 11, 431, 1963.

2. Goodman, T.R., "System Identification and Prediction - An Algorithm Using a
Newtonian Iteration Procedure," Quart. of Applied Math., Vol. 24, No. 3, Oct.
1966.

3. Ozaki T. and Oda H., "Non-Linear Time Series Model Identification by Akaikes
Information Criterion," Information and Systems: Proceedings of the IFAC
workshop, Pergamon Press, 1977.

141



4. Haggan V. and Ozaki T., "Amplitude-Dependent Exponential AR model Fitting for
Non-Linear Random Vibrations," Time Series. (O.D. Anderson, Ed.), North-
Holland Publishing Company, pp. 57-70, 1980.

5. Ozaki, T., "Nonlinear Time Series Models for Nonlinear Random Vibrations," J.
Appl. Prob., 17, pp. 84-93, 1980.

6. Tong H., "A View on Non-Linear Time Series Model Building," Time Series, (O.D.
Anderson, Ed.), North-Holland Publishing Company, pp. 41-56, 1980.

7. Ozaki T., "Non-Linear Threshold Autoregressive Models for Non-Linear Random
Vibrations," J. of Applied Probability, Vol. 18, 1981, pp. 443-451.

8. Batill, S.M., "A Study of Analytic Modeling Techniques for Landing Gear
Dynamics," AFWAL-TR-82-3027, Air Force Wright Aeronautical Laboratories,
May, 1982.

9. Lai H.Y., "Development of Nonlinear Dynamic Data System for Online Machining
Vibratory System Characterization," Ph.d. Thesis, University of Wisconsin, 1984.

10. Batill S.M, and Baccaro J. M., "Modeling and Identification of Nonlinear Dynamic
Systems with Application to Aircraft Landing Gear," Proceedings of the 29th
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference,
pp.871-884, 1988.

The Principal Eigenvectors Method

1. Kumaresan R., and Tufts D.W.,"Estimating the Parameters of Exponentially Damped
Sinusoids and Pole-Zero Modeling in Noise," IEEE Trans. on Acoustics., Vol.
ASSP 30, No.6, 1982, pp.8 3 3 -8 4 0 .

2. D.W. Tufts and R. Kumaresan,"Estimation of Frequencies of Multiple Sinusoids:
Making Linear Prediction Perform Like Maximum Likelihood," Proceedings of the
IEEE, Sept 1982.

3. Tufts D.W. and Kumaresan R., "Singular Value Decomposition and Improved
Frequency Estimation Using Linear Prediction," IEEE Transactions on Acoustics.,
Aug. 1982.

Singular Value Decomposition

1. Press W.H., Flannery B. P., Teukolsky S.A., and Vetterling W.T., Numerical
Recipes. Cambridge Mass, 1986.

2. Brandon J.A., "On the Robustness of Algorithms for the Computation of the Pseudo
Inverse for Modal Analysis," Proceedings of the 6th IMAC, 1988.

Modal Analysis

1. Formenti D., "Analytical and Experimental Modal Analysis," Structural
Measurement Systems Training Paper, May 1977.

142



2. Allemang R.J., "Investigation of Some Multiple Input/Output Frequency Response
Function Experimental Modal Analysis Techniques," Phd. Dissertation, University of
Cincinnati, Cincinnati Ohio, 1980.

3. Void H. and Rocklin G.T., "The Numerical Implementation of a Mult-Modal
Estimation Method for Mini-Computers," Proceedings of the 1st International Modal
Analysis Conference, pp. 542-548, 1982.

4. Ewins D.J., Modal Testing: Theory and Practice. John Wiley, 1984.

5. Craig, Jr., R. R., and Blair, M. A., "A Generalized Multiple-Input, Multiple-Output
Modal Parameter Estimation Algorithm," AIAA Journal, Vol. 23, No. 6, pp. 931-
937, June 1985.

6. Leuridan J.M., Brown D.L., and Allemang R.J., "Time Domain Parameter
Identification Methods for Linear Modal Analysis: A Unifying Approach," Journal of
Vibration, Acoustics, Stress, and Reliability in Design, Vol. 108, pp. 1-8, Jan. 1986.

7. Liang Z., "On Modal Testing in the Time Domain," Dissertation at State University

of New York, 1987.

Digital Control and Data Processing

1. Brighom, E.O., The Fast Fourier Transform. Englewood Cliffs, N.J., Prentice-Hall,
1974.

2. Stanley, W.D., Digital Signal Processing. Reston, Va., Reston Publishing Co., Inc.,
1975.

3. Raven F.H., Automatic Control Engineering, McGraw-Hill, New York, 1978.

4. Franklin G.F., and Powell J.D., Digital Control of Dynamic Systems. Addision-
Wesley Publishing Co., Reading Mass, 1980.

5. Astrom K.J. and Wittenmark B., Computer Controlled Systems, Prentice-Hall,
Englewood Cliffs, N.J., 1984.

6. Bellanger M., Digital Processing of Signals, John Wiley and Sons, N.Y. 1984.

Spectral Estimation

1. Gersch, W., and Sharpe, D., "Estimation of Power Spectra with Finite-Order
Autoregressive Models," IEEE Transactions on Automatic Control, pp. 367-369,
August 1973.

2. Spanos, P. D., and Mignolet, M. P., "Z-Transform Modeling of P-M Wave
Spectrum," Journal of Engineering Mechanics, Vol. 112, No. 8, August, 1986.

3. Mignolet, M. P., and Spanos, P. D., "Recursive Simulation of Stationary
Multivariate Random Processes - Part I," Transactions of the ASME, Vol, 54, pp.
674-680, September 1987.

4. Mignolet, M. P., tid Spanos, P. D., "ARMA Monte Carlo Simulation in
Probabilistic Structural Analysis," AIAA Paper No. 87-0932, Proceedings of the

143



28th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials
Conference, 1987.

5. Spanos, P. D. and Mignolet, M. P., "Recursive Simulation of Stationary Multivariate
Random Processes - Part II," Journal of Applied Mechanics, Vol. 54, pp.681-687,
September 1987.

6. Spanos, P. D., Mushung, L. J, Nelson, Jr., D. A. R., and Hamilton, D. A., "Digital
Spectral Estimation and Modeling of Space Shuttle Flight Data,"AIAA Paper No. 88-
2408, Proceedings of the 29th AIAA/ASME/ASCE/AHS Structures, Structural
Dynamics and Materials Conference, 1988.

144



APPENDIX A - Alternative Formulation

The governing differential equation of any linear system can be put into first order state

space form
x(t) = A x(t) + B u(t) (Al)

y(t) = C x(t) (A2)

The differential equation, Eqn Al can be rearranged for solution after multiplying by exp(-

At) to

d [eAt x(t)] =e B u(t) (A3)

The solution of Eqn A3 is made by simply integrating between tk and t

t

eA t x(t) - e- X(tk)=fJe'ATB u (0 dc (M4)

After rearranging and multiplying by exp(At), the solution is

t

x(t) = eA(t4)x(tk) + f e A(t') B u(,t) dt (5)

Since the selection of t and tk is arbitrary, let tk be kh and t be (k+l)h. Notice that the input
can vary between the sample times t and tk and that Eqn A5 is the exact solution but the

integral depends upon the input time function. However, if one does not know the input

over the entire time domain, but only at discrete time instance, Eqn A5 can be
approximated. If we assume the input is constant over the interval between t and tk and is

equal to U(tk), then Eqn A5 can be reduced to
h

x([k+l]h) =eAh x(kh)+ [f eA dt] Bu(kh) (M)

0

or

145



x([k+l] h) = 4 x(kh) + r u(kh) (A7)

Equation A7 allows one to find an approximate solution of Eqn Al at discrete time

instances by performing a recursive matrix operation. The matrix operation can be put into
a more compact form through the use of the forward shift operator as

(z I - 0) x(kh) = IF u(kh) (A8)

Finally the solution is found through inversion and the use of Eqn A2 as

y(kh) = C (zI-cI)- 11F u(kh) (A9)

here, the discrete time transfer function matrix is

G(z)= C (zI .)-1 " (A10)
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APPENDIX B: The AR model

Complex Ex~tonentials

Consider a summation of exponentials

x(t) = I bk exp (Xk t) (B 1)
k=1

where Xk and bk can be complex or real. If x(t) represents the response of a structure, Xk

should appear as complex conjugates pairs and the corresponding bk has to appear as

complex conjugates. If the sample interval is h, then the response at j sample instances

later is

x(t+jh) = bk exp () k (t+Pjh)) (B2)
k=1

which can be written as

x(t+jh) = zAx(t) = E zk bk exp(Xkt) (B3)
k=1

where z is forward shift operator and
zk=exp(Xkh) (B4)

Writing Eqn B3 for j=O,1,2,... m in matrix form

x(t) -1 -1 ... -1 - 1
zx(t) -z 1  z2 ..- 7m  blexp(%lt)

=0 (B5)

m m m m bmexp(t)
_z x(t)-zl -z2 ...- zm  m *.

or
W 13=0. (B6)

For non-trivial bk, the determinant of IF is zero. The determinant in terms of the first

column of ' is

zm x(t) Cm + zm-I x(t) Cm. I . ..... + z x(t) C1 + x(t) CO =0 (B7)
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where Ci is co-factor of the i+1 element in column I of 'P. Dividing through by Cm and

by zm, one can write

{ +a l z -1 +a2 z -2 +.... +am z
- m ) x(t) =0  (B8)

Equation B8 is the equation for an Autoregressive process, the polynomial in z is the

characteristic equation in the time domain. It is apparent from Eqn B8 that a summation of

exponentials (real or complex) is an Autoregressive process. Also, for Eqn B8 to hold,
W must be singular. If Xi * Xj (that is zi * zj ), IF becomes singular when the first

column is a multiple of any other column; this occurs when z E { zl, z2 ...... z mn } . The

roots of the characteristic equation in the time domain are given by Eqn B4 which can be

mapped to the roots of the characteristic equation in the Laplace domain and eventually to

the modal frequencies and damping factors.

Alternative Formulation

The equations of motion for any linear homogeneous equation can be put into state

space form as

i(t) = A x(t) (B9)

y(t) = C x(t) (B 10)

where x(t) is the vector of states. The exact solution of Eqn B8 is given by Eqn A8 when
r is zero

(zI - D) x(kh) = 0 (B 11)

for non-trivial x, the determinant of (zI - 0) must be zero. The determinant results in the

characteristic equation in the Time Domain. Thus, every state must follow an

Autoregressive process and since y(t) is a linear combination of the states at a given time,

y(t) is also an Autoregressive process.
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APPENDIX C: Singular Value Decomposition

Any matrix, A, belonging to Cm x n can be decomposed into a product of three matrices,

A=UY, VT (Cl)

where
U E Cmxn

V 6 Cnxn
,= diag(O1 ,a2,...,O n) (C2)

and where the a i are termed the singular values of A. The singular values are ordered from
the largest to the smallest. The columns of U are denoted by ui and the columns of V are

denoted by vi . The matrices U and V are orthogonal to themselves, that is

uTu = U UT = I

VTVr= I
V V=I (C3)

If A is of rank r, then
1 > a 2 > ...> Or > Or+,= ...- On= 0 (C4)

the nullspace of A is
N(A) = span [Vr+l I Vr+ 2 ' .. Vn] (C5)

and the range of A is
R(A) = span [u1 , U2, ... 9U ]  (C6)

The pseudo-inverse of A is
A#= (ATA)-IAT = V I -lUT (C7)

A symmetric matrix B, can be represented by

B = ATA = U Z VT (V Z UT ) = U E 2uT (C8)

note that y 2 is also a diagonal matrix. The condition number of A is the ratio of the
maximum singular value and the minimum singular value. If the singular values past the
rth singular value are nearly zero, then the minimum norm approximation of A is
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A -= i i i i
T  (C9)

i=lI

References 12 and 26 provide complete discussions of Singular Value Decomposition

(SVD).
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APPENDIX D-Singular Value Decomposition Solution of Normal Equations

The ill-conditioning problems associated with the solution of an overdetermined set

of equations has been well documented. The LS algorithm requires the solution of an

overdetermined set of equations by forming the Normal Equations. Reference 27 states,
"the Normal Equations are ill-conditioned especially when the number of parameters is

large," and suggests the solution of the overdetermined set of equations by repeated

Householder transformations until the equations are in triangular form. Reference 28

recognizes the ill-conditioning problem and proposes solution through singular value

decomposition (SVD) or QR decomposition. Reference 29 states, "utilization of the normal

equations was numerically unstable, due to the squaring of the condition number of the

coefficient matrix," and recommends the use of the QR decomposition in the solution of the

overdetermined set of equations. The solution of the overdetermined set of equations via

SVD is shown to be equivalent to solution of the normal equations by reference 12.

Solution by SVD has been shown to have many useful properties including rank

determination and determination of the conditioning number of a matrix. However, the

SVD solution of the overdetermined set of equations will be shown to have another useful

property, a well conditioned solution. Given the overdetermined set of equations

AO =b (DI)

where A is Nxp. The LS solution involves the normal equations

0 = (A T A ) -1 A T b (D2)

A can be decomposed to

A=UYZ VT (D3)

where U is an Nxp unitary matrix, S is a diagonal matrix, and V is a pxp orthogonal

matrix. Substitution of the decomposition of A into Eqn D2 yields

e =(V Z U T U VT) VZU b (D4)

since U is unitary
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0=(V E 2VT) IV I UT b (D5)

Note that Vy 2VT is the SVD of ATA and has the condition number of
2

T q
K(A A) =---- (D6)

amin

in terms of the singular values of A. The conditioning of the normal equations is the

square of the conditioning of the overdetermined equations. The inverse in Eqn D5 is easily
computed to be Vy'2VT reducing Eqn D5 to

e:=V z I UT b (D7)

Equation D7 is the solution to the overdetermined set of equation via the pseudo-inverse

calculated through the use of the SVD of A. Equation D7 is the solution to the Least

Squares problem without the formation of ATA. The condition number of the pseudo-

inverse is the square root of Eqn D6. If 1/I,(ATA) approaches the precision of the

computer, the solution via Eqn D2 will be ill-conditioned while solution via Eqn D7 may
not. If 1/K(ATA) does not approach the precision of the computer, Eqn D2 and Eqn D7

will produce the same results. For example, if a minicomputer has 15 and 1/2 digits of

resolution in double precision and iK(ATA) approaches 1016 the solution of Eqn D2 will be

ill-conditioned. The LS solution of normal equations can sometimes be very ill-

conditioned. Solution of the overdetermined equation through the use of the SVD can

alleviate the problem. But solution via SVD is costly in CPU time and memory storage.

In many cases when the normal equation are solved by Eqn D2, ATA (mxm) and ATb

(mx 1) can be formed directly form data without first forming A (nxm) or b (nxl) where n

is the number of overdetermined equations and m is the number of parameters. If the

normal equations are solved by SVD the matrix A has to be formed. Solution by (D2)

requires inversion of a mxm matrix. Solution by SVD requires the decomposition of a nxm

matrix. If n is many times greater than m, then the SVD solution will be considerably

slower than the solution via inversion of the normal equations.
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APPENDIX E: The frequency error envelopes

Once the roots of the time domain characteristic equation are found, the frequency

and damping factors can be extracted from Eqn 16

s = CO + j = [ln Iz + arg(z)] (El)

The error in the estimated damped natural frequency is

1
NJ = F arg(s t -z) (E2)

where it is the estimated pole location and z is the real location. The maximum error is
1 S 1E3

1 arctan F = F arctan exp(- wh) (M)

where e is the radius of uncertainty. The percentage error is found by dividing by cod and

can be put into non-dimensional form by noting

h =1 -(E4)
cod

The damped natural frequency percentage error function is

I ____ CO nyq
% error- exp( (E5)

7r(c/q) d

which for small , is linear in F.

153
U.S. COVrRNMENT PRINTING OFFICE: IQR9-6"8-0S6


